
 

 

 

The Common Operations and Development  
Environment (CODE) for the WSR-88D Open RPG  

CODE B17.0r1.13: May 2016  

Includes ORPG Build 17.0r1.13 

Volume 2.  ORPG Application Software 

Development Guide 

 

- Compile Software - Configure Algorithms/Products - Data Structures - 

 
The U.S. Government Edition of CODE is the complete version. Distribution is limited to within the 

United States Government. 

 

The Public Edition of CODE is intended for public release. Certain Copyrighted material has been 

removed to permit release outside the U.S. Government.  

 

CODE provides:  

 Instructions for setting up the development environment (includes ORPG source code)  

 Guidance for compiling software and configuring new ORPG tasks & products  

 Instructions for definition and use of algorithm adaptation data and algorithm dependent 

parameters  

 API Programming Guide and the structure of WSR-88D algorithms (with sample 

algorithms)  

 WSR-88D specific analysis tools  

 A set of WSR-88D Archive II Data files and other special test case data.  

CODE User provides:  

 An Intel PC with Red Hat Enterprise Workstation.  

 

 

 

 

 

 



 

 

 
CODE Guide Volume 1. Guide to Setting Up the Development Environment 
      Document 1. CODE Specific ORPG Installation Instructions 

             I - Preparation for Installation 

            II - Installation Instructions 

           III - Supplemental Information 

           IV - Running the ORPG 

      Document 2. Installing CODE Software 

             I - Software Requisites for CODE Utilities 

            II - Instructions for CODE Utilities 

           III - Instructions for Sample Algorithms 

CODE Guide Volume 2. ORPG Application Software Development Guide 
      Document 1. The ORPG Architecture 

      Document 2. The ORPG Development Environment 

             I - Integrating Development Software with ORPG Source Code 

            II - Compiling Software in the ORPG Environment 

           III - ORPG Configuration for Application Developers 

           IV - Configuring Site Specific Adaptation Data 

      Document 3. WSR-88D Final Product Format 

             I - Product Block Structure 

            II - Traditional Product Data Packets 

           III - Generic Product Components 

           IV - ORPG Application Dependent Parameters 

      Document 4. ORPG Internal Data for Algorithm Developers 

             I - Base Data Format 

            II - Algorithm Adaptation Data - Configuration & Use 

           III - Other Data Inputs 

CODE Guide Volume 3. WSR-88D Algorithm Programming Guide 
      Document 1. The WSR-88D Algorithm API Overview 

      Document 2. The WSR-88D Algorithm API Reference 

             I - API Service Registration / Initialization 

            II - Control - Input/Output - Abort Services 

           III - Final Product Construction 

           IV - API Convenience Functions 

      Document 3. The WSR-88D Algorithm Structure and Sample Algorithms 

             I - WSR-88D Algorithm Structure  

            II - Sample Algorithms 

           III - Writing Product Data Fields 

      Document 4. Special Topics 

             I - Topics Related to Using the Development Environment 
            II - Topics Related to Reading Radial Base Data 
           III - Topics Related to Writing Algorithms 

CODE Guide Volume 4. CODE Utility Guide 
      Document 1. CODEview Text (CVT) - ASCII Product Display 

      Document 2. CODEview Graphics (CVG) - Graphic Product Display 

             I - Displaying Products with CVG 

            II - Configuring Products for Display by CVG 

      Document 3. Archive II Disk File Ingest - play_a2 Tool 

v1_setup_code1_22.pdf
v2_devel_guide1_21.pdf


 

 

      Document 4. Product Distribution with the nbtcp Tool 

      Document 5. Additional CODE / ORPG Tools 



 

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 4 of 202 

 

Volume 2.  ORPG Application Software 

Development Guide 

 

 
 

This guide is intended for programmers with software development experience in a 

Unix environment and an appropriate background in Radar Meteorology.  

 

CODE is produced in two versions:  

1. National Weather Service Edition - This is the complete version of CODE. Distribution is limited to 

within the National Weather Service and other U.S. Government Agencies. 

2. Public Edition - This version of CODE is intended for public release. Certain proprietary software 

components have been removed to permit release outside the U.S. Government.  

Differences between the two CODE editions are described in Appendix F.  

 

 

Introduction  
 

These documents provide guidance for WSR-88D algorithm developers including:  

 

a. a limited overview of the ORPG software architecture  

b. a description and instructions for using the WSR-88D development environment  

c. documentation of internal ORPG data formats for algorithm developers  

 

The information presented here is independent of writing algorithm source code but does contain some 

references to the Application Programming Interface (API). CODE Guide Volume 3 - WSR-88D 

Algorithm Programming Guide contains the tutorial, reference, and sample algorithms for the WSR-88D 

Algorithm API, and guidance for the structure of algorithms.  

 

Documentation of the ORPG specific development and analysis utilities is provided with CODE Guide 

Volume 4 - CODE Utility Guide  

 

Procedures for starting and stopping the ORPG along with troubleshooting hints are included with 

CODE Guide Volume 1 Document 1 Section IV.   A quick reference to starting the ORPG is provided in 

Appendix G of this Volume. 

 

 

 

 

 



 

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 5 of 202 

Document 1.  The ORPG Architecture  
 

This document provides a brief overview of the ORPG architecture and defines some terms used 

throughout CODE Guide Volume 2 - ORPG Application Development Guide and CODE Guide Volume 

3 - WSR-88D Algorithm Programming Guide.   

 

Document 2.  The ORPG Development Environment  
 

This is a basic description of the ORPG software development environment intended to provide 

sufficient information to compile software and to configure development algorithms for running in the 

ORPG. The ORPG development team has created a flexible environment to allow many programmers to 

contribute to a development effort. Not all aspects of this environment are described here.  

     Section  I   Integrating Development Software with ORPG Source Code  

     Section II  Compiling Software in the ORPG Environment  

     Section III ORPG Configuration for Application Developers  

     Section IV Configuring Site Specific Adaptation Data  

 

Document 3.  WSR-88D Final Product Format  
 

The structure of the products distributed to users is described along with the content of the product 

header. Guidance on the use of the various traditional data packets and the new generic product 

components is provided.  

     Section  I   Product Block Structure  

     Section II  Traditional Product Data Packets  

     Section III Generic Product Components  

     Section IV ORPG Application Dependent Parameters  

 

Document 4.  ORPG Internal Data for Algorithm Developers  
 

This document contains helpful technical information concerning ORPG internals including the format 

of the radar base data input to the algorithms and configuration and use of adaptation data for 

algorithms.  

     Section  I   Base Data Format  

     Section II  Algorithm Adaptation Data - Configuration & Use  

     Section III Other Data Inputs 
 

Appendices   
 

Provides documentation of the base data header fields, the generic moment structure and other topics.  



Vol 2 Document 1 The ORPG Architecture                                                                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 6 of 202 

 

Volume 2.  ORPG Application Software 

Development Guide 
 

Document 1.  The ORPG Architecture  

 

This brief introduction is intended to cover the basic terms and operating concepts of the ORPG for 

WSR-88D algorithm developers without exposure to unnecessary detail. The ORPG Software Design 

Description (SDD), which is part of the formal ORPG documentation, includes a more complete 

description of the ORPG design.   

 

Tasks and Linear Buffers  

The Open Radar Product Generator (ORPG) consists of more than 100 loosely coupled tasks 

(processes). These tasks are launched when the ORPG is started. Related tasks are grouped into 

functional areas called computer program components (CPC) such as: user interface functions, radar 

data acquisition functions, product distribution, monitor and control functions, communications 

management, and the meteorological and product formatting algorithms. ORPG tasks communicate via 

two mechanisms. Some tasks respond to ORPG registered events which are posted by other tasks. 

However, the primary concept of operation of the ORPG is a data flow paradigm. While the legacy RPG 

used centrally managed buffers to exchange data, the ORPG tasks pass data via linear buffers.  

 

A linear buffer is a data storage facility that provides the primary mechanism for inter-task 

communication in the WSR-88D ORPG. Virtually all persistent internal data storage is accomplished 

via linear buffers. Most linear buffers are of type 'file' where the stored data exist in files which are 

persistent. For performance purposes, a few linear buffers are configured as 'shared memory' buffers 

which only contain data while the ORPG is running. All data is stored in a linear buffer in the form of 

"messages". ORPG service libraries hide the details of reading and writing linear buffer messages. 

However, the reader of a linear buffer message must know the structure of the data stored in the 

message.  

 

Linear buffers are configured when created and can be configured to behave in a variety of ways. The 

default behavior is a sequential queue of messages -- a message queue type. The buffer is configured for 

a specific size and a maximum number of messages. When filled, the oldest message is retired. A buffer 

can also be configured as "replaceable" or a message database type, where messages are overwritten by 

new messages (for example, adaptation data storage and the ORPG product database).  

 

Algorithms and Product Storage  
 

The basic data flow from base data to product storage is illustrated in Figure 1. A task called 'Process 

Base Data' takes the incoming messages from the Radar Data Acquisition (RDA) subsystem, strips off 



Vol 2 Document 1 The ORPG Architecture                                                                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 7 of 202 

the data messages and formats them for use by the ORPG algorithms. ORPG algorithm tasks write each 

product type to a unique linear buffer. Simple algorithms input base data and output a product for 

distribution (a final product). More complex algorithms are implemented via a series of tasks producing 

intermediate products.  

 

 

 

Figure 1. Basic ORPG Product Data Flow  

 

 

Final products are formatted according to the Interface Control Document (ICD) for the RPG to Class 1 

User, document 2620001. The Algorithm API provides some support for correctly formatting final 

products. Currently, there is no specified format for intermediate products which are not distributed to 

users. When a product is written to a linear buffer, the ORPG inserts an internal 96-byte header to each 

product message for storage in linear buffers. This "Pre-ICD" product header is used by the ORPG 

product distribution infrastructure.  

 

Each product is stored individually in a separate linear buffer message. Generally, intermediate products 

are stored (along with the 96-byte internal header) in the corresponding product-specific linear buffer. 

Final products are stored (along with the 96-byte internal header) in the main product database linear 

buffer. In this case, the product-specific linear buffer message contains only the 96-byte internal header 

that includes a reference to the product database linear buffer message containing the product. All of this 

is transparent to the algorithm. The WSR-88D Algorithm API handles all of the details.  

 

The product-specific linear buffers are configured to retain the several of the most recent product 

messages (typically 10 for volume final products and 40 for elevation final products). The retention of 

product messages in the product database linear buffer is centrally managed and can be configured by 

the user.  

 



Vol 2 Document 1 The ORPG Architecture                                                                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 8 of 202 

ORPG Product Data Flow  

If an algorithm is implemented as a series of tasks, each task must be connected by at least one 

intermediate product to the next task in order to satisfy the data flow scheduling mechanism. Any task 

can have multiple product data inputs. A task can have more that one product output, either intermediate 

or final. In the example provided in Figure 2, the task "hailalg" has two product inputs (CENTATTR & 

TRFRCATR) and two product outputs (TRENDATR & HAILATTR).  

 

15 / 03

segmtalg

VOLUME

15 / 03

segmtalg

VOLUME

15 / 05

cpcntalg

VOLUME

15 / 05

cpcntalg

VOLUME

15 / 07

trfrcalg

VOLUME

15 / 07

trfrcalg

VOLUME

27 SEGATTR

ELEVATION_DATA

50 TRFRCATR

VOLUME_DATA

22 CENTATTR

VOLUME_DATA

302 REFLDATA_ELEV

ELEVATION_DATA

15 / 09

hailalg

VOLUME

15 / 09

hailalg

VOLUME

48 HAILATTR

VOLUME_DATA

34 TRENDATR

VOLUME_DATA

16 / 04

hailprod

VOLUME

16 / 04

hailprod

VOLUME

33 HAILCAT (59)

VOLUME_DATA
alert paired

16 / 05

strucprod

VOLUME

16 / 05

strucprod

VOLUME

49 STRUCDAT (62)

VOLUME_DATA

Hail Index

Storm Structure

 

Figure 2. Data Flow for the Hail Algorithm  

 

 

The data flow diagram contains many configuration parameters (see Figure 3). Generally parameters are 

associated with either the program task or the product data store.  

 

Task

08 / 04

basevgrid

ELEVATION

08 / 04

basevgrid

ELEVATION

replay

PDP

Product

Dependent

Parameters

CPC no / Task no

Name of task

Task type (timing)

Replay task

Data Store (lb)

43  ALRTPROD (73)

VOLUME_DATA

(WH)

pri 255

alert paired

Buffer number   Name of buffer   (Prod code)

Data timing  

Warehoused / priority 255 / alert paired

 

Figure 3. Task & Data Store Legend  

 

 

The parameters include the name of the actual executable (Name of task), a reference to the location in 

the ORPG source code (CPC number / Task number), buffer number, and buffer name (internal name of 

the product). The product code is the external numerical reference for the product. Data timing 



Vol 2 Document 1 The ORPG Architecture                                                                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 9 of 202 

corresponds to the frequency that the product is generated, generally once per elevation or once per 

volume. These configuration parameters and others are described in detail in Document 2 of this 

Volume of the CODE Guide.  

 

A data flow diagram showing tasks and products for all existing WSR-88D algorithms is contained in 

the  algorithm_data_flow_bNN.pdf file (located in the --/pdf_doc/ directory on the CODE CD).  

 

NOTE: Not all of the products in the diagram are present with the Public Edition of CODE. A list of 

products not included with the Public Edition is provided in Appendix F.  

 

In order to completely understand this diagram, the reader must be familiar with the Algorithm API 

documented in CODE Guide Volume 3 - WSR-88D Algorithm Programming Guide. Note that not all 

data used and shared by algorithms are shown in these diagrams; only the product data are shown. 

Algorithms also read adaptation data in order to obtain site specific information (radar location, 

elevation, etc.) and to customize algorithm performance via parameters contained in configuration files 

rather than through recompilation of the software. Many legacy FORTRAN algorithms use an additional 

mechanism for sharing data called Inter-Task Common Blocks (ITC Blocks). More recent algorithms use 

non-product data stores for additional persistent data.  

 

Data Driven Algorithm Tasks  
 

All algorithm tasks are data driven processes. Each task in the chain of processing for a final product 

will not enter it's processing loop until the required dependent product input is available. The two types 

of data driven tasks are illustrated in Figure 4. Task 1 is the most common type. The processing loop is 

entered when registered "driving" product input is available. Subsequent reads of other inputs will block 

until the input is available. Task 2 has multiple product inputs but enters its processing loop when any 

one of the registered product inputs are available. Only that single available input is used.  

 

Task 2Task 2

Task 1Task 1

optional, 60

Algorithm using multiple product inputs

Algorithm using one of several product inputs

The algorithm blocks until the first registered input, 

INPUT A, is available.  This is called the driving 

input.  INPUT A is read first, then the other inputs 

are synchronized by the ORPG infrastructure.

The algorithm blocks until any one of the inputs is 

available.  The available input is read and used in 

constructing the product.

INPUT A

INPUT A

INPUT B

INPUT B

INPUT C

INPUT C  

Figure 4. Data Driven Algorithm Tasks  

 



Vol 2 Document 1 The ORPG Architecture                                                                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 10 of 202 

Location of Linear Buffer Files  

 

The location of linear buffer files is determined by the value of the ORPGDIR environmental variable. The 

linear buffer files are arranged in subdirectories based upon the type of information contained. For 

example, the adaptation data linear buffers are contained in the adapt subdirectory, the product-specific 

linear buffer files related to base data are in the subdirectory base and the main product database linear 

buffer is in the pdist subdirectory which contains all storage buffers related to product distribution. The 

specific subdirectory and linear buffer filenames are determined by ORPG configuration files which are 

discussed in CODE Guide Volume 2 Document 2 - The ORPG Development Environment.    

 



Vol 2 Document 2 The ORPG Development Environment                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 11 of 202 

 

Volume 2.  ORPG Application Software 

Development Guide  
 

Document 2.  The ORPG Development Environment  

This is a basic description of the ORPG software development environment intended to provide 

sufficient information to compile software and to configure development algorithms for running in the 

ORPG. The ORPG development team has created a flexible environment to allow many programmers to 

contribute to a development effort. Not all aspects of this environment are described here.  

 

The following discussion assumes that the ORPG has been installed and configured in accordance with 

the instructions provided with the ORPG Software Distribution.  

 

Section  I   Integrating Development Software with ORPG Source Code  
 

A description of the organization of the ORPG source code and guidance on the placement of 

development software within that structure. 

 

Section II   Compiling Software in the ORPG Environment  
 

An explanation on the use of the ORPG software makefile system and instructions on compiling 

development software.    

 

Section III  ORPG Configuration for Application Developers  
 

Instructions covering configuration procedures for adding executable tasks (specifically new 

algorithms), ORPG data stores (i.e., linear buffer files), and new products to the ORPG.    

 

Section IV  Configuring Site Specific Adaptation Data  
 

This is a brief guide in providing the correct site adaptation data for the RDA that produced the radar 

data being ingested into the ORPG in the development environment.  



Vol 2 Doc 2 Section I - Integrating Development Software with ORPG Source Code    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 12 of 202 

Vol 2. Document 2 - 

The ORPG Development Environment  

Section I  Integrating Development Software with ORPG Source 

Code  

 

This document covers the following topics.  

 The organization and contents of the ORPG source code directory structure.  

 Guidance on locating new development software (algorithm source code) in the ORPG directory 

structure.  

 Instruction on moving existing development software to a new ORPG source code tree.  

 

Build 11:  Added description of the source and installed location of algorithm adaptation data 

definition files, the directory for adaptation data include files, the directory for algorithm task 

and data store man pages, and the directory for the temporary 'snippet' configuration files. 

 

ORPG Source Code Directory Structure 
 

Below is a partial summary of the ORPG directory structure. Some of the directories are created when 

the ORPG is compiled.  

 

The following are the top level directories with respect to the directory into which the ORPG is installed. 

The variable $HOME is set to this installation directory.  

 

src  

Contains the makefiles and the source code for the ORPG. This directory is 

subdivided into major computer program components (CPC) contained in individual 

directories (e.g., cpc001, cpc101), which include sub directories containing individual 

libraries and executable tasks (lib003, tsk001).  
include  

Contains the include files associated primarily with ORPG tasks.  Algorithm related 

header files containing definitions shared outside the algorithm task (for example 

algorithm adaptation data structure definition) are placed here. 
lib  

lib/include  

contains the include files associated with the ORPG libraries.  
lib/lnux_x86  

contains the ORPG shared libraries for the Linux PC platform (after software 

is compiled and installed).  
lib/slrs_spk  

contains the ORPG shared libraries for the Solaris Sparc platform (after 

software is compiled and installed).  



Vol 2 Doc 2 Section I - Integrating Development Software with ORPG Source Code    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 13 of 202 

man  

Contains the ORPG man pages.   
man/cat1  

The man pages for algorithm tasks are placed here when the source code is 

checked into the operational system.. 
man/cat4  

The man pages for the algorithm data stores (product and non-product) are 

placed here when the source code is checked into the operational system. 
conf  

Make description files which are included into appropriate makefiles. Some 

description files are architecture specific.  
cfg  

ORPG configuration files (after software is compiled and installed). These files 

involve all aspects of ORPG configuration including the hardware configuration 

(number of computing nodes, number of external interfaces, etc.), executable tasks, 

product and data storage. Many of these files installed in the CODE algorithm 

development environment are not installed in the operational ORPG. During 

development several files in this directory are customized for task and product 

configuration. 
cfg/dea  

contains configuration files for algorithm adaptation data (after software is 

compiled and installed).  During the development stage, it is recommended 

that the algorithm adaptation data files (.alg) be manually copied from the 

src/cpc104/lib006 directory rather than modifying the makefiles. 
cfg/extensions  

is a directory used during development to contain the 'snippet' files that 

configure the tasks and product data stores for the development algorithm 
cfg/vcp 

this directory contains the definitions of the volume coverage patterns (VCP) 

for the radar. 
data  

Beginning with Build 10, this is the standard location for the ORPG persistent data 

files. By default, the variable ORPGDIR points to this directory.  
bin  

ORPG executable files (after software is compiled and installed). General scripts are 

at the top level while compiled executables are in the appropriate architecture specific 

directory, i.e., bin/lnux_x86 or bin/slrs_spk.  
tools  

If ORPG tools are installed via compiling source code, they are installed here. If 

installed from a binary distribution, they may be installed in a different location.  
tools/bin  

contains executable files (after software is compiled and installed) for ORPG 

utilities. General scripts are at the top level while compiled executables are in 

the appropriate architecture specific directory, i.e., tools/bin/lnux_x86 or 

tools/bin/slrs_spk.  
tools/cfg  

contains copies of ASCII configuration and adaptation data files (after 

software is compiled and installed).  
tools/data  

contains the background map files and other tool data files (after software is 



Vol 2 Doc 2 Section I - Integrating Development Software with ORPG Source Code    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 14 of 202 

compiled and installed).  
tools/cvgN.N  

contains default configuration files for the CODE CVG utility (after software 

is compiled and installed).  
tools/cvg_map  

is the default location of the CVG background map files (after software is 

compiled and installed).  
ar2data 

this directory is created by the CODE installation and contains 3 sample archive II 

volume files. 

 

 

 



Vol 2 Doc 2 Section I - Integrating Development Software with ORPG Source Code    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 15 of 202 

 

Adding Algorithm Software to the ORPG  

 

Introduction  
 

This section only provides guidance for the location of development source code in the ORPG software 

directory structure. An introduction to the ORPG Makefile system in the following section, Compiling 

Software in the ORPG Environment, provides the necessary information to ensure that the software is 

correctly compiled and binaries are properly installed into the ORPG.  

 

The top level directory structure of the source code tree divides the ORPG software into units called 

computer program components or CPCs. These are not components in the strict architectural sense but 

represent a partitioning of the software into related functionality. For example, software in the cpc001 

directory contains source code for tasks and libraries related to the human computer interface (HCI) 

portion of the ORPG and software in cpc007 is related to algorithms producing reflectivity, velocity, 

and spectrum width products. A description of the contents of source code directories is provided in the 

man page cpcmap. ORPG algorithms are contained in the following cpc directories:   

 

 

src/cpc007  

Base Data Products  
src/cpc008  

Message Processing  
src/cpc010  

MIGFA (NWS CODE only)  
src/cpc013  

Precipitation Algorithms  
src/cpc014  

Precipitation Products  
src/cpc015  

Storm Series Algorithms  
src/cpc016  

Storm Products  
src/cpc017  

Kinematic Algorithms  
src/cpc018  

Kinematic Products  
src/cpc022  

OTHER (NWS CODE only)  
src/cpc104/lib006 

Algorithm adaptation data files (.alg) 

 
The second level directory structure of the source code tree divides each cpc directory into source 

directories for individual algorithm tasks or libraries.  The task directories are named tsk001, tsk002, 

etc. and the library directories are named lib001, lib002, etc.   

 

 



Vol 2 Doc 2 Section I - Integrating Development Software with ORPG Source Code    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 16 of 202 

Guidance for Integration of Algorithms into the ORPG Baseline  
 

There is currently no formal directive concerning where to place the source code when developing new 

algorithms. Ultimately, the NWS Radar Operations Center (ROC) will decide into which CPC a new 

algorithm will be placed when it is integrated into the operational baseline. This location is normally 

determined during one of the design / integration reviews with the ROC. 

 

Guidance for Algorithm Developers 
 

The following guidance will help minimize the effort required to integrate development source code 

with the baseline ORPG source code.  

 

Filename conventions for development source code 
 

The configuration management system used by the ROC requires unique filename regardless of the 

directory in which the file is located.  The following suggestions will minimize potential filename 

conflicts. 

 

 All files for an individual task (files within a tsk subdirectory) should begin with a prefix related 

to the tasks purpose or the product produced by the task. 

 

 

Location of development source code in ORPG source tree 

 Consider creating a new tsk subdirectory within an existing cpc directory when  

o Modifying an existing algorithm  

o Creating an algorithm closely related to existing algorithms 

 If creating a new cpc directory, consider the following in choosing an unused cpc number.  

o Using cpc099 and below is recommended. This is the area where new operational 

algorithms may be located.  

o In addition, any unused directory in the cpc300 series could be used (cpc305 is used for 

CODE sample algorithms).  

o The following cpc directories should not be used.  

 cpc100 series contains system-level software and should not be used.  

 

 If a series of related algorithms are under development  

o It would be appropriate to place them in the same cpc directory  

o If these algorithms use a common shared library that is not of interest to other algorithms 

or the ORPG in general, the source code for that shared library should be located in a lib 

subdirectory within that CPC. 

 Source code for developer added shared libraries should not be placed within a cpc directory 

containing existing system libraries (the cpc100 series). Designating a development library as a 

"system level" resource requires formal approval. 



Vol 2 Doc 2 Section I - Integrating Development Software with ORPG Source Code    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 17 of 202 

 Additional restrictions on the organization of source code are based upon using the ORPG 

makefile system (see Section II of this document, Compiling Software in the ORPG 

Environment). These policies must be followed to take advantage of the ORPG makefile system:  

o Source code for binary executables should be located in a subdirectory named tsk001 - 

tsk999. For operational tasks (including algorithms), there is normally only one binary 

executable produced from the source code within each subdirectory.  

o Source code for shared libraries should be located in a subdirectory named lib001 - 

lib999. There is normally one shared library produced from the source code within each 

subdirectory.  

 

Location of other algorithm related files in ORPG source tree. 

 

Algorithm adaptation data definition files 

The algorithm adaptation data files should be placed in cpc104/lib006.  These files are installed 

into cfg/dea directory for run-time use.  It is recommended they be manually copied into the 

cfg/dea directory during development rather than modifying the makefile.  See Vol 2 Doc 4, 

Section II. 

 

Algorithm adaptation data include files 

The algorithm adaptation data include files should be placed into the include directory prior to 

handoff to the ROC for integration into the operational system.  If only needed by a single task they 

can remain in the individual task directory during development 

 

Algorithm task man pages 

The algorithm task man pages (*.1) and output data store man pages (*.4) should be in the task's 

source directory (src/cpcXXX/tskXXX).  When the code is officially checked into the operational 

system they are placed into the appropriate directories (man/cat1 man/cat4). 
 

Algorithm task and output data configuration 

The algorithm task and output product data store configuration is supplied to the ROC in the form of 

'snippet' files which are placed into the cfg/extensions directory. See Vol 2, Doc 2, Section III 

Part C item 5 for organization of data and naming conventions for the snippet files. 

 



Vol 2 Doc 2 Section I - Integrating Development Software with ORPG Source Code    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 18 of 202 

 

Moving Development software to a New ORPG  
 

When upgrading your development environment to a new version of the ORPG source code, the new 

ORPG should be installed and compiled in a new account.  

 Development source code is then copied into the new directory structure. 

 The new ORPG will have to be configured for the algorithm tasks that are copied over into the 

new account.  The development products and tasks should be configured using 'snippet' files 

which are placed into the cfg/extensions directory rather than by modification of the 

task_attr_table, task_tables, product_attr_table, and   data_attr_table 

configuration files, and by modification of the product_generation_tables configuration file 

(see section III of this guide titled, ORPG Configuration for Application Developers, for more 

information). If the new ORPG includes new tasks or products, some changes to your previous 

modifications might be required in order to avoid conflicts. The following attributes must be 

unique within the ORPG (see section III of this guide titled, ORPG Configuration for 

Application Developers, for more information).  

o Product Codes for final products  

o Linear Buffer Numbers and Product Names  

o Linear Buffer filenames  

o Task Names (executables and logical name)  

o Data Store Numbers and Data Store Names  

If the structure or semantic content of any of the configuration files has been changed in the new 

ORPG, the configuration of the development algorithms will have to be re accomplished 

following the new guidance provided in this guide. If the structure has not changed the 

configuration snippet files can be used without modification and the and the default generation 

table entries in the product_generation_tables configuration file can be copied from the old 

of the file.. 

 On occasion the contents of the individual task makefiles (named *.mak) change with a new 

ORPG Build. If this occurs a new makefile will have to be created following the examples 

provided in Section II of this document. 

 If the directories containing your development code are used by this new ORPG, you will have 

to relocate your code.  

o Moving source code to a different directory requires some editing of the makefiles. With 

proper use of non hard coded directory references these changes are minimal, if any.  

o Beginning with Build 9, the task number (which was based upon the source code 

directory) is no longer an attribute in either the task_attr_table or the 

product_attr_table configuration files.  



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 19 of 202 

Vol 2. Document 2 - 

The ORPG Development Environment  

Section II   Compiling Software in the ORPG Environment  

 

 

 
Build 12:   

 When compiling individual libraries, there are no chmod messages concerning changing 

the permissions of the bzip2 libraries symbolic links. 
 
 
Build 11:   

 The Radar Operations Center is enforcing all ANSI C standards with the Build 11 

release.  The most common impact on development code is that C++ style comments 

using '//' are not permitted 

 Added description of the source and installed location of algorithm adaptation data 

definition files, the directory for adaptation data include files, the directory for algorithm 

task and data store man pages, and the directory for the temporary 'snippet' configuration 

files. 

 Expanded guidance on the procedures for compiling source code to include when 

recompiling of the complete ORPG is needed. Described a recompile procedure that 

avoids referring to the more complicated procedures in Volume 1 

 

 

This document covers the following topics.  

 Part A. describes the ORPG makefile system and provides guidance on modifying template 

makefiles for new algorithms.  

 Part B. provides instructions for compiling individual algorithms.  

 Part C. explains how to use the makefile system to install non source code components such as 

scripts.  

 

Part A. ORPG Makefile Guide for ORPG Source Code  
 

 

This introduction to the ORPG Makefile system provides the necessary information to compile new 

applications in the ORPG environment. Guidance concerning the placement of development source code 

in the ORPG directory structure is provided in the previous section, Overview of ORPG Software.  

 

Environmental Variables  
 

The following environmental variables must be defined for the ORPG makefile system to function 

properly.  



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 20 of 202 

 

MAKETOP  

The top level directory of the source code tree.  
LOCALTOP  

An "alternate" top level directory. If defined, this represents the top level of the 

"install" tree. If not defined, the install tree is identical to the source code tree defined 

by MAKETOP.  
MAKEINC  

The top level directory under which the makefile configuration directory conf is 

located.  
ARCH  

Two target architectures are currently supported. The value is lnux_x86 for the Linux 

PC platform and slrs_spk for the Solaris Sparc platform.  

 

Basic instructions for defining these variables are provided in CODE Guide Volume 1 Document 1 - 

CODE Specific ORPG Installation Instructions. The following instructions assume a basic configuration 

that has the source code and installed binaries in the same directory tree.  

 

 

Global Make Description Files  
 

Two global make description files contain the details for the makefiles used in the ORPG environment. 

They are referenced at the beginning of all makefiles.  

 

include $(MAKEINC)/make.common 

include $(MAKEINC)/make.$(ARCH) 

 

One file (make.common) is generic and the other file (make.lnux_x86 or make.slrs_spk) is specifically 

architecture dependent (for the Intel PC or Solaris Sparc platform). These files are configured for the 

local development environment as part of the ORPG SW installation procedures.  

 

Other global makefiles are used in specific situations. For example, make.cbin is used with the single 

target binary make file for an ANSI-C binary and make.subdirs is used in the CPC level makefiles. 

Their use should be noted in the following examples.  

 

 

CPC Level Makefiles  
 

The makefile in the CPC level directory allows the compilation of all libraries and or tasks in the 

subdirectories with one command (and is also required to compile this CPC with the rest of the ORPG). 

The only modification to the template that is required is the listing of the subdirectories in the specific 

cpc. This makefile includes make.subdirs at the end. The following example is taken from cpc007.  

 

# RCS info 

# $Author: steves $ 

# $Locker:  $ 

# $Date: 2008/01/07 23:23:22 $ 

# $Id: cpc007.make,v 1.9 2008/01/07 23:23:22 steves Exp $ 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 21 of 202 

# $Revision: 1.9 $ 

# $State: Exp $ 

 

include $(MAKEINC)/make.common 

include $(MAKEINC)/make.$(ARCH) 

 

SUBDIRS = tsk001 \ 

 tsk002 \ 

 tsk003 \ 

 tsk004 \ 

 tsk006 \ 

 tsk008 \ 

 tsk009 \ 

 tsk011 \ 

 tsk012 \ 

 tsk013 \ 

 tsk014 \ 

 tsk015 

 

CURRENT_DIR = . 

include $(MAKEINC)/make.subdirs 

 

Note: Using a CPC level makefile is not required for development work. If not used the sub tasks and 

libraries must be compiled individually.  

 

 

Task / Library Level Makefiles  
 

The makefile in the task / library level directory allows the compilation of all of the required objects for 

that task / library with one command. This file (called the "parent" makefile) references one or more 

single-target "children" makefiles which are named with a .mak extension. If generating a task, this 

makefile includes make.parent_bin after listing all of the children BINMAKEFILES. If generating a 

library, the makefile includes make.parent_lib after listing all of the children LIBMAKEFILES. The 

following example is from cpc017/tsk010.  

 

# RCS info 

# $Author: ccalvert $ 

# $Locker:  $ 

# $Date: 2003/07/03 20:46:03 $ 

# $Id: cpc017_tsk010.make,v 1.1 2003/07/03 20:46:03 ccalvert Exp $ 

# $Revision: 1.1 $ 

# $State: Exp $ 

 

 

include $(MAKEINC)/make.common 

include $(MAKEINC)/make.$(ARCH) 

 

BINMAKEFILES = mda3d.mak  

 

include $(MAKEINC)/make.parent_bin 

 

Single Target Binary Makefiles  
 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 22 of 202 

These are the "children" makefiles which are named with a .mak extension. These makefiles provide the 

instructions to produce only a single binary executable (task) or single shared library, which is the 

convention followed in the ORPG. Typically only a few items from a template need modification. 

Examples for a FORTRAN binary, ANSI-C binary, FORTRAN library, and an ANSI-C library are 

provided.  

 

IMPORTANT NOTE: Algorithms should no longer be written in FORTRAN. Though there is no firm 

time table, all current Legacy FORTRAN algorithms are being ported to ANSI-C during the next 

several build cycles.   A list of recently ported algorithm tasks is provided in Appendix F of 

Volume 3 of the CODE guide. 

 FORTRAN Binary 
For a single FORTRAN binary file the critical make variables include:  

o FC_LOCAL_LIBRARIES - The standard libraries needed by FORTRAN algorithms are 

defined by F_ALGORITHM_LIBS in make.common. Append any algorithm specific libraries 

if required.  

o FSRCS - list of FORTRAN source files.  

o TARGET - the name of the binary file.  

# RCS info 

# $Author: ccalvert $ 

# $Locker:  $ 

# $Date: 2004/02/05 22:48:47 $ 

# $Id: cmprfape.mak,v 1.7 2004/02/05 22:48:47 ccalvert Exp $ 

# $Revision: 1.7 $ 

# $State: Exp $ 

 

# Template make description file for describing a Fortran binary file 

 

include $(MAKEINC)/make.common 

include $(MAKEINC)/make.$(ARCH) 

 

# In case if there are any includes that are not in standard places.  

# Normally this should always be blank. 

FC_LOCAL_INCLUDES =  

FPP_LOCAL_INCLUDES =  

# In case if there are any local fortran defines. 

FC_LOCAL_DEFINES = 

FPP_LOCAL_DEFINES = 

 

# This list has all the includes that are needed for the compile. 

# Local copies of a file are given preference over the system  

# location. 

FC_ALL_INCLUDES = $(FC_STD_INCLUDES) $(FC_LOCALTOP_INCLUDES) \ 

                              $(FC_TOP_INCLUDES) $(FC_LOCAL_INCLUDES) 

FPP_ALL_INCLUDES = $(FPP_STD_INCLUDES) $(FPP_LOCALTOP_INCLUDES) \ 

                              $(FPP_TOP_INCLUDES) $(FPP_LOCAL_INCLUDES) 

 

# This is a list of all fortran defines. 

FC_ALL_DEFINES = $(FC_STD_DEFINES) $(FC_OS_DEFINES) $(FC_LOCAL_DEFINES) 

FPP_ALL_DEFINES = $(FPP_STD_DEFINES) $(FPP_OS_DEFINES) $(FPP_LOCAL_DEFINES) 

 

# If extra library paths are needed for this specific module. 

FC_LIBPATH = 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 23 of 202 

 

# These libraries are named the same on all architerctures at this time. 

# Location of each of libraries depends on the architecture. e.g. ORPG HP  

# libraries are located in $(TOP)/lib/hpux_rsk. If there are separate  

# library names for different architectures, the below portion of the 

makefile  

# will have to be moved to $(MAKEINC)/make.$(ARCH). 

# libraries specific to orpg 

FC_LOCAL_LIBRARIES =  -laprcom $(F_ALGORITHM_LIBS) 

FC_PURE_LOCALLIBS = $(FC_LOCAL_LIBRARIES) -lbzip2 

FC_DEBUG_LOCALLIBS = $(FC_LOCAL_LIBRARIES) -lbzip2 

FC_EXTRA_LIBRARIES = -lV3 

 

# architecture specific system libraries and load flags. 

FC_slrs_spk_LIBS = $(F_ALGORITHM_SYS_LIBS) 

FC_slrs_x86_LIBS = $(F_ALGORITHM_SYS_LIBS) 

FC_hpux_rsk_LIBS = -lV3 

FC_slrs_spk_LDFLAGS = 

FC_slrs_x86_LDFLAGS = 

FC_hpux_rsk_LDFLAGS = +U77 

 

# some system libraries, if needed. 

FC_SYS_LIBS =  

 

FCFLAGS = $(COMMON_FCFLAGS) $(FC_ALL_INCLUDES) $(FC_ALL_DEFINES) 

PUREFCFLAGS = $(COMMON_PUREFCFLAGS) $(FC_ALL_INCLUDES) $(FC_ALL_DEFINES) 

DEBUGFCFLAGS = $(COMMON_DEBUGFCFLAGS) $(FC_ALL_INCLUDES) $(FC_ALL_DEFINES) 

FPPFLAGS = $(COMMON_FPPFLAGS) $(FPP_ALL_INCLUDES) $(FPP_ALL_DEFINES) 

PUREFPPFLAGS = $(COMMON_PUREFPPFLAGS) $(FPP_ALL_INCLUDES) 

$(FPP_ALL_DEFINES) 

DEBUGFPPFLAGS = $(COMMON_DEBUGFPPFLAGS) $(FPP_ALL_INCLUDES) 

$(FPP_ALL_DEFINES) 

 

# We cannot "makedepend" Fortran source files ... it is important to define 

# DEPENDFILE to be "empty" (protects the depend command lines) 

#DEPENDFLAGS =  

DEPENDFILE = 

 

FSRCS =   cmprfape.ftn \ 

     a307b1.ftn   

 

# Following is for specifying any non-local object files (e.g., cpc-level 

# object files) 

ADDITIONAL_OBJS = 

 

TARGET = cmprfape 

 

include $(MAKEINC)/make.fbin 

 ANSI-C Binary 
For a single C binary file the critical make variables include:  

o LOCAL_LIBRARIES - The standard libraries needed by C algorithms are defined by 

C_ALGORITHM_LIBS. These are: -ladaptstruct -lrpgc -lorpg -linfr -lbzip2 -

lm. The library -lrpgc is specific to algorithms written in C and -ladaptstruct is for 

the new adaptation data mechanism. Algorithm unique libraries (if any) are included here 

after the standard libraries.  

o SRCS - list C source files.  



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 24 of 202 

o TARGET - the name of the binary file. NOTE: having a 'space' after the target name causes 

multiple warnings, double compilation, and a link failure. 

 

# RCS info 

# $Author: ccalvert $ 

# $Locker:  $ 

# $Date: 2004/02/05 22:41:11 $ 

# $Id: recclalg.mak,v 1.6 2004/02/05 22:41:11 ccalvert Exp $ 

# $Revision: 1.6 $ 

# $State: Exp $ 

 

 

include $(MAKEINC)/make.common 

include $(MAKEINC)/make.$(ARCH) 

 

 

LOCAL_INCLUDES = 

 

# You can also include architecture specific includes, if needed, by 

# defining $(ARCH)_INC and then adding it to the list of ALL_INCLUDES. 

 

LOCAL_DEFINES =  

 

# You can also include architecture specific defines, if needed, by 

# defining $(ARCH)_DEF and then adding it to the list of ALL_DEFINES. 

 

ALL_INCLUDES = $(STD_INCLUDES) $(LOCALTOP_INCLUDES) $(TOP_INCLUDES) \ 

                         $(LOCAL_INCLUDES) 

 

# This is a list of all defines. 

ALL_DEFINES = $(STD_DEFINES) $(OS_DEFINES) $(LOCAL_DEFINES) 

 

# If extra library paths are needed for this specific module. 

# Specify $(X_LIBPATH) when appropriate ... 

LIBPATH = 

 

# These libraries are named the same on all architectures at this time. 

# Location of each of libraries depends on the architecture. e.g. ORPG HP 

# libraries are located in $(TOP)/lib/hpux_rsk. If there are separate 

# library names for different architectures, the below portion of the  

# makefile will have to be moved to $(MAKEINC)/make.$(ARCH). 

# libraries specific to orpg 

LOCAL_LIBRARIES = $(C_ALGORITHM_LIBS) 

 

# Different order/set of libraries needed to build with debug information 

DEBUG_LOCALLIBS = $(LOCAL_LIBRARIES) 

GPROF_LOCALLIBS = $(DEBUG_LOCALLIBS) 

 

PURE_LOCALLIBS = $(DEBUG_LOCALLIBS) 

QUAN_LOCALLIBS = $(DEBUG_LOCALLIBS) 

PRCOV_LOCALLIBS = $(DEBUG_LOCALLIBS) 

 

EXTRA_LIBRARIES = 

 

# Architecture and debug or profiling tool dependent linker options for 

# slrs_spk 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 25 of 202 

slrs_spk_LD_OPTS =  

 

slrs_spk_DEBUG_LD_OPTS = -lnsl -lsocket -lelf -lrt 

slrs_spk_GPROF_LD_OPTS = $(slrs_spk_DEBUG_LD_OPTS) 

 

slrs_spk_PURE_LD_OPTS = $(slrs_spk_DEBUG_LD_OPTS) 

slrs_spk_QUAN_LD_OPTS = $(slrs_spk_DEBUG_LD_OPTS) 

slrs_spk_PRCOV_LD_OPTS = $(slrs_spk_DEBUG_LD_OPTS) 

 

# Architecture and debug or profiling tool dependent linker options for 

# lnux_x86 

lnux_x86_LD_OPTS =  

 

lnux_x86_DEBUG_LD_OPTS = 

lnux_x86_GPROF_LD_OPTS = $(lnux_x86_DEBUG_LD_OPTS) 

 

lnux_x86_PURE_LD_OPTS = $(lnux_x86_DEBUG_LD_OPTS) 

lnux_x86_QUAN_LD_OPTS = $(lnux_x86_DEBUG_LD_OPTS) 

lnux_x86_PRCOV_LD_OPTS = $(lnux_x86_DEBUG_LD_OPTS) 

 

# Flags to be passed to compiler 

CCFLAGS = $(COMMON_CCFLAGS) $(ALL_INCLUDES) $(ALL_DEFINES) 

 

DEBUGCCFLAGS = $(COMMON_DEBUGCCFLAGS) $(ALL_INCLUDES) $(ALL_DEFINES) 

GPROFCCFLAGS = $(COMMON_GPROFCCFLAGS) $(ALL_INCLUDES) $(ALL_DEFINES) 

 

PURECCFLAGS = $(COMMON_PURECCFLAGS) $(ALL_INCLUDES) $(ALL_DEFINES) 

QUANCCFLAGS = $(COMMON_QUANCCFLAGS) $(ALL_INCLUDES) $(ALL_DEFINES) 

PRCOVCCFLAGS = $(COMMON_PRCOVCCFLAGS) $(ALL_INCLUDES) $(ALL_DEFINES) 

 

# use following for makefile-specific makedepend flags 

# (re: SYS_DEPENDFLAGS in make.$(ARCH) 

DEPENDFLAGS = 

 

SRCS = recclalg_main.c \ 

        recclalg_classifyEcho.c \ 

        recclalg_computeProbs.c 

 

TARGET = recclalg 

 

DEPENDFILE = ./depend.$(TARGET).$(ARCH) 

 

include $(MAKEINC)/make.cbin 

 

-include $(DEPENDFILE) 

 

 FORTRAN Library 
For a single Fortran library the critical make variables include:  

o LIB_FSRCS - list of Fortran source files (.ftn).  

o LIB_TARGET - the name of the binary file.  

# $Date: 1999/07/30 15:57:19 $ 

# $Id: libaprcom.mak,v 1.1 1999/07/30 15:57:19 steves Exp $ 

# $Revision: 1.1 $ 

# $State: Exp $ 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 26 of 202 

 

include $(MAKEINC)/make.common 

include $(MAKEINC)/make.$(ARCH) 

 

# In case if there are any includes that are not in standard places.  

# Normally this should always be blank. 

FC_LOCAL_INCLUDES =  

FPP_LOCAL_INCLUDES =  

 

# In case if there are any local fortran defines. 

FPP_LOCAL_DEFINES = 

 

# This list has all the includes that are needed for the compile. 

# Local copies of a file are given preference over the system  

# location. 

FC_ALL_INCLUDES = $(FC_STD_INCLUDES) $(FC_LOCALTOP_INCLUDES) \ 

      $(FC_TOP_INCLUDES) $(FC_LOCAL_INCLUDES) 

FPP_ALL_INCLUDES = $(FPP_STD_INCLUDES) $(FPP_LOCALTOP_INCLUDES) \ 

      $(FPP_TOP_INCLUDES) $(FPP_LOCAL_INCLUDES) 

 

# This is a list of all fortran defines. 

FC_ALL_DEFINES = $(FC_STD_DEFINES) $(FC_OS_DEFINES) $(FC_LOCAL_DEFINES) 

FPP_ALL_DEFINES = $(FPP_STD_DEFINES) $(FPP_OS_DEFINES) $(FPP_LOCAL_DEFINES) 

 

FC_slrs_spk_LDFLAGS = 

FC_slrs_x86_LDFLAGS = 

FC_hpux_rsk_LDFLAGS = +U77 

 

FCFLAGS = $(COMMON_FCFLAGS) $(FC_ALL_INCLUDES) $(FC_ALL_DEFINES) 

PUREFCFLAGS = $(COMMON_PUREFCFLAGS) $(FC_ALL_INCLUDES) $(FC_ALL_DEFINES) 

DEBUGFCFLAGS = $(COMMON_DEBUGFCFLAGS) $(FC_ALL_INCLUDES) $(FC_ALL_DEFINES) 

FPPFLAGS = $(COMMON_FPPFLAGS) $(FPP_ALL_INCLUDES) $(FPP_ALL_DEFINES) 

PUREFPPFLAGS = $(COMMON_PUREFPPFLAGS) $(FPP_ALL_INCLUDES) 

$(FPP_ALL_DEFINES) 

DEBUGFPPFLAGS = $(COMMON_DEBUGFPPFLAGS) $(FPP_ALL_INCLUDES) \ 

                $(FPP_ALL_DEFINES) 

 

# We cannot "makedepend" Fortran source files ... 

DEPENDFILE = 

 

LIB_FSRCS = a30740.ftn \ 

        a30744.ftn \ 

        a30745.ftn \ 

        a30746.ftn \ 

        a30748.ftn \ 

        a30749.ftn \ 

        a3074a.ftn \ 

        a31483.ftn \ 

        a31484.ftn \ 

        a31485.ftn \ 

        a31486.ftn \ 

        a31487.ftn \ 

        a31488.ftn \ 

        a3148a.ftn \ 

        a3148b.ftn \ 

        a3148c.ftn \ 

        a3148e.ftn \ 

        a3148f.ftn \ 

        a3148h.ftn  



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 27 of 202 

         

 

LIB_TARGET = aprcom 

 

clean:: 

 $(RM) $(ARCH)/*.f 

 

# Following required only to support "getfiles" target ... 

# Add header files, for example, to the list as required 

GROUP = cpc101 

getfiles:: 

 for file in $(LIB_FSRCS) ;\ 

 do \ 

       $(RAZOR) -c get -f $$file -g $(GROUP) -o ;\ 

 done 

 

 

include $(MAKEINC)/make.cflib 

 ANSI-C Library 
For a single C library the critical make variables include:  

o LIB_CSRCS - list of ANSI-C source files.  

o LIB_TARGET - the name of the binary file.  

# RCS info 

# $Author: dzittel $ 

# $Locker:  $ 

# $Date: 2005/02/17 16:13:47 $ 

# $Id: libsaa.mak,v 1.3 2005/02/17 16:13:47 dzittel Exp $ 

# $Revision: 1.3 $ 

# $State: Exp $ 

 

include $(MAKEINC)/make.common 

include $(MAKEINC)/make.$(ARCH) 

 

LOCAL_INCLUDES =  

 

# You can also include architecture specific includes, if needed, by 

# defining $(ARCH)_INC and then adding it to the list of ALL_INCLUDES. 

 

LOCAL_DEFINES = 

# You can also include architecture specific defines, if needed, by 

# defining $(ARCH)_DEF and then adding it to the list of ALL_DEFINES. 

 

# Append X_INCLUDES to the list of includes if you want to  

# use include files for X and motif. 

ALL_INCLUDES = $(LOCAL_INCLUDES) $(STD_INCLUDES) $(LOCALTOP_INCLUDES) \ 

         $(TOP_INCLUDES)  

 

# This is a list of all defines. 

ALL_DEFINES = $(STD_DEFINES) $(OS_DEFINES) $(XOPEN_DEFINES) 

$(LOCAL_DEFINES) 

 

CCFLAGS = $(COMMON_CCFLAGS) $(ALL_INCLUDES) $(ALL_DEFINES) 

PURECCFLAGS = $(COMMON_PURECCFLAGS) $(ALL_INCLUDES) $(ALL_DEFINES) 

 

DEBUGCCFLAGS = $(COMMON_DEBUGCCFLAGS) $(ALL_INCLUDES) $(ALL_DEFINES) 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 28 of 202 

 

SHRDLIBLD_SEARCHLIBS = -lbzip2 -lz 

 

LIB_CSRCS = build_saa_color_tables.c \ 

        padback.c \ 

        padfront.c \ 

        radial_run_length_encode.c \ 

        saa_max_value.c \ 

        short_isbyte.c \ 

        compute_area.c 

 

LIB_TARGET = saa 

 

DEPENDFILE = ./depend.lib$(LIB_TARGET).$(ARCH) 

DEPENDFLAGS = -f $(DEPENDFILE) 

 

include $(MAKEINC)/make.cflib 

 

-include ./makedepend.$(ARCH) 

 

 

Whether working in FORTRAN or ANSI-C, the 'local includes' and 'local defines' portions of the 

makefiles are normally blank for software that is being integrated into the ORPG. However, there are 

situations where local definitions are appropriate. These sections of the binary makefiles can be used for 

definitions that are not of general interest to the ORPG as a whole, as in the example provided for an 

ANSI-C library.  

 

 

ORPG Components That Are Not Compiled  
 

The ORPG contains non source code components such as executable scripts and configuration files. Part 

C. of this document discusses how to use the ORPG makefiles for these items.  

 

 

 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 29 of 202 

 

Part B. Build Procedures  
 

 

Normally recompiling the whole ORPG is not necessary and should be avoided. 

 

Compiling Selected Libraries / Tasks 
 

Using the makefiles described in the previous section, building software requires the following 

commands be issued from the appropriate directory.  

 

Individual Libraries 

 

For libraries execute these commands from the ~/src/cpcNNN/libNNN directory.  

 
chmod 0777 $HOME/lib/$ARCH/*.s?  
make clean  
make libinstall  
chmod 0555 $HOME/lib/$ARCH/*.s?  

  
 

The first and last commands are required to install shared libraries. For performance reasons, ORPG 

shared libraries are installed read only. 

 

Individual Tasks 

For executable tasks execute these commands from the ~/src/cpcNNN/tskNNN directory.  

make clean  
make all  
make install 

 

 

All Tasks and Libraries in a CPC.  

 

To build the entire contents of a CPC containing both libraries and executable tasks execute the 

following commands from the ~/src/cpcNNN directory. 

 

 
chmod 0777 $HOME/lib/$ARCH/*.s?  
make clean  
make libinstall  

make all 

make install 
chmod 0555 $HOME/lib/$ARCH/*.s?  

  

 

Additional Notes: 

 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 30 of 202 

If new source code or include files are added, a make depend command could be used prior to the three 

commands listed to rebuild the dependency list at the end of the makefile. However, the make depend 

command may not always handle dependencies correctly and the ORPG development team does not rely 

on it. Therefore the following guidance should be followed.  

 Executing all three commands ( - clean, - all, - install) in sequence is the norm.  

 The - clean command can be omitted if the only change is to source code files.  

 If only include files have changed or if linked static libraries have been modified, all three 

commands must be executed.  

 

Recompiling the Entire ORPG  
 

When Compiling the ORPG is needed 

 

Normally recompiling the whole ORPG is not necessary and should be avoided.  There are three 

situations where recompiling the whole ORPG is needed. 

 

1. An include file used by more than one algorithm is modified. It may be easier to recompile the 

ORPG than all of the algorithms affected.   

a. One example is a modification of orpgdat.h when configuring a new non-product data 

store. Here the entire ORPG must be recompiled. 

b. Another example is a modification of an adaptation data include file used by more than 

one algorithm. 

 

2. A system library is modified.  This is not normally accomplished by an algorithm developer. 

There are two examples. 

a. A patch to a system library has been received to solve a specific issue.   

b. The developer has added a newly developed DEA access function to the adaptation data 

library libadaptstruct.  This is not necessary for development purposes and is 

normally accomplished by the ROC when delivering a new algorithm for integration into 

the operational system. 

 

3. Compiler options may have been changed for debugging purposes. 

 

 

Procedures for recompiling the ORPG 

 

Before compiling the ORPG steps must be taken to avoid losing any modified configuration files.  All 

but one of these files are in the ~/cfg directory tree.  If guidance within this document and Volume 1 

has been followed, all files specifically modified for CODE and the particular CODE account have 

backup copies saved.  A list of relevant files is included in OPTION 2 below. 

 

OPTION 1 
 

This option works as long as the reason for recompiling the ORPG is not a patch that affects the contents 

of the ~/cfg directory. 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 31 of 202 

Rather than following the guidance for recompiling the ORPG in Volume 1, it is easier to make a 

backup of the entire contents of the ~/cfg directory and subdirectories.  The following steps safely 

accomplish a recompile of the entire ORPG. 

 

1. Ensure there is a backup copy of the existing .rssd.conf file in the account home directory. 

 

2. Rename the ~/cfg directory. 

 

3. Compile the ORPG by executing the following command from the account home directory. 

 

make_rpg $HOME >& <your output filename> 

 

4. Restore the previous .rssd.conf file in the account home directory. 

 

5. Erase the entire contents of the new ~/cfg directory and restore the saved ~/cfg directory. 

 

 

OPTION 2 
 

If the patch was to cpc104, the contents of the ~/cfg directory may be affected.  In this case saving and 

restoring the existing contents of the ~/cfg directory will not work.  The compile procedures contained 

in Volume 1 may be more appropriate.  Begin with the steps under "Compiling the ORPG Source Code" 

in Volume 1, Document 1 Section II and continue to the end of the section.  The following is a list of 

files that are customized for the account and must be restored after compiling the ORPG. 

 

The contents of the .rssd.conf file in the account home directory are customized for the account. 

 

The files within the ~/cfg directory that may have been modified during algorithm configuration are: 

data_attr_table (if a snippet was not used) 

product_attr_table (if a snippet was not used) 
product_generation_tables  

task_attr_table (if a snippet was not used) 

task_tables (make sure you are using the appropriate version - NWS / Public) 

 

The files within the ~/cfg directory that may have been modified if using the nbtcp tool are: 
comms_link.conf  
tcp.conf  

service_class_table (if the number of requests for a class was modified) 

 

 

A new adaptation data definition file (DEA file) may have been added to the ~/cfg/dea directory. 

 

Configuration 'snippet' files may have been added to the ~/cfg/extensions directory. 

 

 

Summary of Additional Makefile Targets 
 

Here is a summary of additional Makefile targets supported by the ORPG Makefile system (assuming 

the proper environment has been configured).  



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 32 of 202 

 

WARNING: Use caution using these additional targets. For example, the ORPG development team no 

longer uses the depend target because they found it unreliable.  

 

Targets for Compiling and Installing Source Code      

clean  remove compiled binaries from source tree  

depend  generate dependency list (not reliable)  

all  generate a defined list of targets (executable binaries)  

install  install binaries in appropriate location  

liball  generate a defined list of libraries  

libinstall  install libraries in appropriate location  

Targets for Debugging and Profiling Utilities      

debugall  generate binaries for gdb  

debuginstall  install binaries for gdb  

gprofall  generate binaries for GNU profiler  

gprofinstall  install binaries for GNU profiler  

pureall  generate binaries for Purify  

pureinstall  install binaries for Purify  

quantifyall  generate binaries for Quantify  

quantifyinstall  install binaries for Quantify  

 

 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 33 of 202 

 

Part C. Installing Components Containing No Source Code  
 

The ORPG makefile system is also used to install components that are not compiled: executable scripts 

and configuration files. There are two methods this is accomplished.   

 

 

Using a Single Target Binary Makefile  
 

These are the "children" makefiles that are named with a .mak extension. A modified ANSI-C binary 

makefile is used.  

 Script File or Configuration File 
For a script or a configuration file the only make variable that matters is:  

o TARGET - the name of the script or configuration file to install.  

The single target makefile is modified as follows:  

o For an executable script, make.script is included near the end rather than make.cbin  

o For a configuration file, make.cfg is included rather than make.cbin  

The following excerpt is taken from the library that installs the basic text configuration files.  

# RCS info 

# $Author: ccalvert $ 

# $Locker:  $ 

# $Date: 2004/06/30 16:54:32 $ 

# $Id: alert_table.mak,v 1.2 2004/06/30 16:54:32 ccalvert Exp $ 

# $Revision: 1.2 $ 

# $State: Exp $ 

 

# Template make description file for describing a C binary file 

 

include $(MAKEINC)/make.common 

include $(MAKEINC)/make.$(ARCH) 

 

 

LOCAL_INCLUDES =  

          .                    .                    . 

          .                    .                    . 

          .                    .                    . 

          .                    .                    . 

 

ADDITIONAL_OBJS = 

 

TARGET = alert_table 

 

#DEPENDFILE = ./depend.$(TARGET).$(ARCH) 

 

include $(MAKEINC)/make.cfg 

 

#-include $(DEPENDFILE) 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 34 of 202 

 

 

Omitting the Single Target Binary Makefile  
 

A short cut method can be used to eliminate the need for the single target binary makefiles for scripts 

and configuration files. In this case additional information is included with the Task / Library level 

makefiles. This added information is equivalent to the contents of make.script and make.cfg.  

 

This example Task / Library level makefile installs a script into the ~/tools/bin directory 

($TOOLSCRIPTDIR). 

 

# RCS info 

# $Author: ccalvert $ 

# $Locker:  $ 

# $Date: 2005/06/02 14:54:56 $ 

# $Id: cpc102_tsk001.make,v 1.1 2005/06/02 14:54:56 ccalvert Exp $ 

# $Revision: 1.1 $ 

# $State: Exp $ 

 

# This is the parent make description file for cpc_grep tool 

 

include $(MAKEINC)/make.common 

include $(MAKEINC)/make.$(ARCH) 

 

install:: 

     @if [ -d $(TOOLSCRIPTDIR) ]; then set +x; \ 

     else (set -x; $(MKDIR) $(TOOLSCRIPTDIR)); fi 

     $(INSTALL) $(INSTBINFLAGS) cpc_grep.script $(TOOLSCRIPTDIR)/cpc_grep 

 

In this example, files in cpc102/tsk001 named "xyz.script" are renamed to "xyz" when installed. Note 

that with no BINMAKEFILES listed there is no need to include make.parent_bin.  

 

This example Task / Library level makefile installs communications related configuration files into the 

~/tools/data directory ($TOOLSDATADIR) and the ~/tools/cfg directory ($TOOLSCFGDIR). 

 

# RCS info 

# $Author: ccalvert $ 

# $Locker:  $ 

# $Date: 2005/02/24 23:20:03 $ 

# $Id: cpc104_lib002.make,v 1.13 2005/02/24 23:20:03 ccalvert Exp $ 

# $Revision: 1.13 $ 

# $State: Exp $ 

 

# This is the parent make description file for Task Data Files 

# The data directory needs to be made here for the build_install_files script 

 

include $(MAKEINC)/make.common 

include $(MAKEINC)/make.$(ARCH) 

 

install::  

     @if [ -d $(TOOLSDATADIR) ]; then set +x; \ 

     else (set -x; $(MKDIR) $(TOOLSDATADIR)); fi 

     @if [ -d $(DATADIR) ]; then set +x; \ 

     else (set -x; $(MKDIR) $(DATADIR)); fi 



Vol 2 Doc 2 Section II - Compiling Software in the ORPG Environment                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 35 of 202 

     @if [ -d $(TOOLSCFGDIR) ]; then set +x; \ 

     else (set -x; $(MKDIR) $(TOOLSCFGDIR)); fi 

     $(INSTALL) $(INSTDATFLAGS) ktlx.map $(TOOLSDATADIR)/ktlx.map 

     $(INSTALL) $(INSTDATFLAGS) klwx.map $(TOOLSDATADIR)/klwx.map 

     $(INSTALL) $(INSTDATFLAGS) change_radar.dat $(TOOLSCFGDIR)/change_radar.dat 

 

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 36 of 202 

Vol 2. Document 2 - 

The ORPG Development Environment  

Section III ORPG Configuration for Application Developers  

 

This document covers the following topics  

 Part A. Is an Introduction to Adding a New Algorithm  

 Part B. Describes some Configuration and Naming Issues  

 Part C. Covers the procedures for adding Tasks and Product Data Stores  

 Part D. Describes the configuration of Non-product Data Stores  

BUILD 12 NOTES: 
 

 Updated discussion of high level algorithm design issues. Emphasized that normal 

meteorological algorithms usually have no need to register for events but listed two 

situations where an event driven algorithm might be appropriate. 

 
BUILD 11 NOTES: 

 

 Procedures for the configuration of 'replay' instances of algorithm tasks was added. 

 Described the responsiveness to one-time requests as a design consideration. 

 The product_attr_table configuration of product156, NTDA_EDR, is non-standard 

and should not be used as an example. 

 Modified guidance to reflect that development tasks and data stores should always be 

configured using 'snippet' files rather than modifying the existing configuration files. 
  

 

Special Instructions if upgrading from a previous version of the ORPG 
 

Warning: Do not attempt to reuse the configuration from an installation of an earlier version of the 

ORPG. This includes the product_attr_table, task_attr_table, task_tables, data_attr_table, 

and the product_generation_tables configuration files.  

 

 

Part A. Introduction to Adding a New Algorithm  
 

This section describes configuration procedures for adding executable tasks (specifically, new 

algorithms), ORPG data stores (i.e., linear buffer files), and new products to the ORPG. These 

procedures will ensure that development algorithms will run in the ORPG environment. Section I of this 

document contains guidance concerning the organization of source code for new algorithms.  

 

Before proceeding, please note the following:  



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 37 of 202 

1. Three (possibly four) configuration files have to be modified in order to add an algorithm to the 

ORPG. When using the WSR-88D Algorithm API, an algorithm will not run if certain 

configuration information is not entered correctly.  

2. When editing configuration files, care must be taken to preserve the pairing of opening and 

closing braces in the tables. This and other syntax errors in the configuration tables can 

prevent the ORPG from starting.  

3. After changing configuration files, certain data files in the ORPG data directory ($ORPGDIR) 

must be replenished in order for the changes to be recognized. This can be accomplished by 

using the -p option when starting the ORPG which deletes the contents of the product database, 

message logs, adaptation data, etc.  

 

Summary of High Level Algorithm Design Issues  
 

There are many issues affecting high-level algorithm design many of which are beyond the scope of this 

document. Some of the factors to be considered:  

 

 

Data driven or Event driven  
 

 

Virtually all algorithms should be data driven.  That is the algorithm begins processing with the 

availability of input product data.  Very few meteorological algorithms have a need to register for 

events.  Most existing algorithms using events are involved in system monitoring and control, for 

example pcipdalg, cltutprod).   

 

 The main reason for using an event driven algorithm would be if the task had non-product data 

inputs and no product inputs.  In this case an alternative would be to have a driving product data 

input of the desired timing (elevation or volume) to act as a trigger to activate the algorithm.  

This alternative should be used if the task also has a replay version. 

 Another reason for using an event driven algorithm is an algorithm that does not function with 

the data flow timing of the ORPG.  In this case any output product produced is not 

RADIAL_DATA, ELEVATION_DATA, or VOLUME_DATA.  The input product (if any) would be 

DEMAND_DATA and the output data also DEMAND_DATA. 

 

 

 

Input data and number of tasks  

 Can the algorithm be implemented in one task or should the processing be divided among a 

series of tasks producing intermediate products?  

o One factor in this decision is that customizing parameters in the request message (other 

than elevation for elevation products) are only passed to the task producing the final 

product. 

o Another factor is that with multiple tasks, intermediate products can be produced that 

could be used by other downstream tasks. 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 38 of 202 

o Finally, responsiveness to one-time requests for products could be a factor in dividing the 

processing into multiple tasks. 

 

 Should the algorithm input base data or are there existing intermediate products that can form the 

basis of input data? Obviously use caution in depending upon intermediate product data from an 

algorithm stream controlled by another organization. 

 

 LIMITATION: If an algorithm task has multiple product data inputs, the data timing (VOLUME, 

ELEVATION, RADIAL) of the product inputs are typically the same. There are restrictions on using 

multiple product data inputs having different data timings. See CODE Guide Volume 3, 

Document 3, Section I, Guidance for the Structure of Algorithms, for more information.  

 

 Are there any existing Public non-product data stores that would be useful?  

 

Types of Persistent Algorithm Data  
 

There are several classifications of persistent data within the ORPG. From an algorithm design / 

configuration perspective there are three classes of interest: "product data", "non-product data", and 

"adaptation data". These classes are configured in a different manner.  

 Product data stores are implemented as linear buffers and configured using the 

product_attr_table configuration file.  

 Public non-product data stores are implemented as linear buffers and configured with the 

data_attr_table file.  

 Private non-product data stores are standard disk files and require no configuration because they 

are not managed by the ORPG.  

 Adaptation data is covered in CODE Guide Volume 2, Document 2, Section IV and Volume 2, 

Document 4, Section II.  

Several Legacy Fortran algorithms use another mechanism of sharing persistent data called 

'Inter-Task Communication (ITC) Blocks'. Support for this communication mechanism was 

implemented in the ORPG infrastructure. Even though the C Algorithm API includes 

functions to use ITC blocks, they are not recommended for use in new algorithms. 

 

In place of 'ITC Blocks', special data access functions are provided to support the non-product 

data stores described in this document.  

 

Basic Definition:  

 Any data distributed to external users via product distribution interfaces are product data. These 

are called "final products".  

 Base data messages from the RDA are product data.  

 LIMITATION: In an algorithm where processing is divided among two or more tasks, the tasks 

must be connected by at least one "intermediate product" (product data). Within the ORPG 

architecture, intermediate products are a process triggering mechanism for downstream tasks.  

Beyond the basic definition, how are algorithm persistent data classified as product or non-product?  



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 39 of 202 

 

Data classification Factors  

 Generally data should be classified as product data when:  

o The data is derived from or associated with the radar scan. If requested or scheduled for 

production, this data is modified either every elevation or every volume.  

o The data must be synchronized. The ORPG API product reading functions automatically 

ensure the data are of the same elevation and/or the same volume as appropriate. 

   

 Generally data should be classified as non-product data when:  

o The data is some kind of algorithm state data. It may change frequently or infrequently 

but is not necessarily associated with the radar scan. One example is accumulation data 

that spans time periods not associated with volume scans.  

o Synchronization is not needed. The non-product data access API functions provide no 

synchronization of data. Depending upon the type of data this may be desirable. 

   

Storage Implementation Factors 

 Product linear buffers are always configured as a message queue type buffer and the algorithm 

API product reading functions read the messages sequentially until the appropriate elevation / 

volume data is found. All messages must contain the same type (and structure) of data. 

 Public non-product linear buffers can be configured in two ways.  

o A message database type buffer. The purpose of this type of buffer is to provide a non-

sequential message set. The algorithm is responsible for making room for more messages 

when the buffer is full.  With this type of linear buffer messages are written and read with 

a specified message ID. The user has more control because any specific message can be 

read or updated (replaced). Beginning with Build 10, the API provides a database style 

access for use with very large data sets.  Each message may contain different types of 

data.  

o A message queue type buffer. The purpose of this type of buffer is to write message 

sequentially and read message sequentially.  When full, the older messages are 

automatically deleted. This might be advantageous for use even with product data 

(associated with the radar scan) if there is a need to read previous messages. With the 

product API, once a message in a message queue buffer is read the message pointer 

automatically points to the next message.  All messages should contain the same type 

(and structure) of data. 

 Private non-product disk files are not managed by the ORPG and are accessed via the standard 

C file input/output library. Private data stores are useful if the data do not need to be shared with 

other algorithm tasks. They are also useful for data that must be preserved even if the ORPG is 

shutdown. If data are used by more than one task, the public non-product data store should be 

considered. 

 

Responsiveness to One-Time Requests  

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 40 of 202 

The response time for one-time requests is a concept of operations issue.  Normally this consideration 

only applies to those products that use the 6 product dependent parameters in the request message to 

customize a product in some fashion.  For data driven algorithms reading the original base data 

(recombined base data) or reading intermediate product data, this is a configuration issue not an 

algorithm design issue. 

 

Types of Product Requests 
 

There are two basic types of product requests. 

 Routine Requests.  These products are produced every volume.  The request is a result of being 

part of the default product generation list or listed on a Routine Product Set (RPS) list of a Class 

1 user. 

 One-Time Requests.  These products are produced once in response to each received one-time 

request, unless already produced as a result of routine requests. 

 

It does not make sense to have routine requests for some products having content customized with the 

request parameters.  One example are the vertical cross section products.  For other customized 

products, such as precipitation accumulation products, having the product automatically produced could 

be useful. 

 

Replay Tasks 
 

The purpose of a replay task is to respond more quickly to a one-time request than the normal real-time 

instance of a task can.  A replay task is a second instance of an algorithm task which handles the one-

time requests for the output products while the original instance of the task handles the routine requests 

for the product.  For data driven tasks this is handled seamlessly by the infrastructure.  For event driven 

tasks, the algorithm must use an API function to determine which instance it is running as.  Replay tasks 

are configured using the task_attr_table and task_tables configuration files (see step 2 in Part C of 

this document). 

 

For a replay task to function as intended (that is to respond to the one-time request as soon as possible), 

the input product data must be immediately available. The current and previous volumes of the original 

base data (BASEDATA, REFLDATA, and COMBBASE) are available in special buffer for use by replay tasks.   

Any intermediate product data used by replay tasks must be configured as warehoused with generation 

assured with a priority of 255.   

 

For tasks using one of the new non-recombined base data streams or a raw data stream (which are not 

stored in a replay buffer), the algorithm could be divided into multiple tasks with needed intermediate 

product data warehoused. 

 

There is a tradeoff for obtaining this responsiveness.  When satisfying a one-time request, a replay task 

will use data from the current volume scan if available.  If not available, data from the previous volume 

is used to immediately satisfy the request. 

 

The behavior of a replay task is covered in Volume 3, Document 3, Section I, Part C - Algorithm 

Initialization and Control Loop. 

 

 

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 41 of 202 

Summary of Steps Required to Configure the ORPG for a new Algorithm Task  

 Determine the intermediate product data to be used as input.  

 Determine the attributes needed to describe the algorithm task and product(s).  

 Configure the task by modifying the task_attr_table and the task_tables configuration 

files.  

 Configure the new product(s) by modifying the product_attr_table configuration file. For 

the product to be generated by default, the product_generation_tables file must also be 

modified.  

 Configure any desired non-product data stores by modifying the data_attr_table 

configuration file.  

 Using the Algorithm API, implement the algorithm.  

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 42 of 202 

 

Part B. Configuration and Naming Issues  
 

The current procedures for adding algorithms to the ORPG involve modification of 3 or 4 configuration 

files. Some of this information is redundant and must be consistent in all of the files. The critical 

information, which must be consistent and not conflict with other tasks / data stores, is listed in the 

following table.  

 

 

SPECIAL NOTE: A <Prod_Registration_Name>(<Prod_Buffer_Number>) pair in the 

task_attr_table entry for each task is used to determine the data inputs and outputs for the 

algorithm. This mechanism makes it easy for a developer to change data inputs for testing or 

to configure different task names to use different inputs (see CODE sample algorithm 1). 

However even though it is not required, when an algorithm is formally integrated into the 

ORPG, the <Prod_Registration_Name> should be the same as the <Prod_Buffer_Name> in 

the product_attr_table file. Using a consistent name makes the data flow of multiple 

algorithms easier to understand.  

 

 

Task Attributes  

ITEM  VALUE  DESCRIPTION  

<Executable_Name>  

A valid filename (typically 

lower case) of the executable 

file, for example rad_refl 
Note 1  

Filename of the executable binary.  

<Task_Name>  

A unique name (typically lower 

case) that is used by the ORPG 

infrastructure to identify the 

task, for example rad_refl 
Note 2  

This name is normally identical to the 

<Executable_Name>.  A special use for 

a different name is the 'replay' instance 

of a task. Note 2  

   Note 1: The maximum length for an Executable Name is not documented. It is 

recommended that this name be kept to under 25 characters and ensure that the 

length of the complete pathname for the installed executable does not exceed 59. 

This limit also permits the <Task_Name> of the replay instance to not exceed 32 

characters (see step 2 - Configuring a New Task in Part C of this document). 

   Note 2: Normally the <Task_Name> and <Executable_Name> should be the same. This 

would mean limiting their length to 25 characters. (The absolute maximum length 

for the <Task_Name> is 32 characters defined by ORPG_TASKNAME_LEN 32 in 

orpgtat.h). There are specific cases where these names differ and this involves 

having two different tasks (<Task_Name>) having the same <Executable_Name>. 

Using multiple instances of a task is discussed in step 2 - Configuring a New Task 

in Part C of this document. 

 

 

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 43 of 202 

Product Data Attributes 

ITEM  VALUE  DESCRIPTION  

<Prod_Buffer_Name>  

An alphanumeric 

(upper case by 

custom), for 

example 
FAA_DIGVEL 
Note 1  

Prior to Build 9, this name was used to 

reference the product within the algorithm. It 

is still useful as a handle to refer to the data 

in documentation and conversationally so 

should remain unique.  

<Prod_Registration_Name>  

An alphanumeric 

(upper case by 

custom), for 

example 
FAA_DIGVEL 
Note 1  

Beginning with Build 9, this name is used by 

the algorithm (via API calls and the contents 

of the task_attr_table) to refer to the 

input / output product data. There is no 

requirement for this name to be unique 

within the ORPG. Though not required, it is 

highly recommended that the unique 

<Prod_Buffer_Name> be used as the 

registration name.  

<Prod_Buffer_Number>  
An integer 

ranging from 0 to 

1999  Notes 2 & 3  

The linear buffer number (also called 

"Product ID" or "Buffer ID")  

<Product_Code>  
An integer 

ranging from 0 to 

1999  Notes 2 & 3 

The code used by the legacy system to 

request products (also referred to as "pcode" 

or "message code") Note 4  

<LB_filename>  

A valid filename 

for a linear 

buffer in the 

form of *.lb 
Note 5 

The linear buffer filename corresponding to 

the <Prod_Buffer_Number>  

   Note 1: The maximum length for a Product Name and a Product Registration Name is not 

documented. A maximum length of 25 characters should be used to avoid a 

breakdown of parsing the task_attr_table. 

   Note 2: Legacy products are assigned buffer numbers / product codes between 0 and 130. 

The buffer numbers and product codes are normally not the same value for legacy 

final products. 

 Note 3: New products are assigned butter numbers / product codes between 131 and 1999.  

The buffer numbers and product codes are the same for new final products.  

Though any unused number between 131 and 1999 can be used, the block 

1940-1989 has been reserved for development and can be used without the risk 

of being stepped on by newly integrated algorithms. Buffer numbers 1990-1999 

are reserved for CODE sample algorithms. 

   Note 4: Only final products (i.e., products distributed to users) are assigned a unique 

positive <Product_Code>.   All intermediate products have a <Product_Code> of 

0. 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 44 of 202 

 Note 5 The filename should be kept relatively short. The specific limit on the linear buffer 

filename appears to be 199 characters for the complete pathname of the file 

 (#define MAX_LBNAME_SIZE 200 in orpgda.c). 

 

Intermediate products have a <Product_Code> of 0 while final products (those distributed outside the 

ORPG) have a unique positive integer value assigned.  

 

Using base data (from the RDA) as an input is a special case. For example, two types of radial base data 

input buffers that are frequently used are.  

 <Prod_Buffer_Number> 79, REFLDATA, provides reflectivity data only.  

 <Prod_Buffer_Number> of 96, COMBBASE provides Doppler data (velocity and spectrum width) 

in addition to reflectivity data. See Volume 2, Document 4, Section I, Base Data Format, for 

additional information.  

 

There are many types of base data that can be used as input but all contain the basic moments. See 

Volume 2, Document 4, Section I, Base Data Format, for additional information.  

 

 

Non-Product Data Attributes 

ITEM  VALUE  DESCRIPTION  

<Data_Buffer_Name>  

An alphanumeric (upper 

case by custom), for 

example SAAUSERSEL 
Note 1  

The name used by the ORPG to 

reference a particular data buffer (by 

referencing the buffer number)  

<Data_Buffer_Number>  
An integer ranging from 

3000000 to 4000000 

  Note 2  

The linear buffer number corresponding 

to the <Data_Buffer_Name> (also called 

"Buffer ID")  

<Buffer_filename>  

A valid upper case 

filename for a linear 

buffer in the form of 

*.DAT     Note 3 

The linear buffer filename 

corresponding to the 
<Data_Buffer_Number>  

   Note 1: The maximum length for a Data Name is not documented. It is recommended that it 

be kept to a maximum of 25 characters in length.  

   Note 2: A block of buffer numbers that can be used for non-product data stores has not been 

reserved for development use. The developer must ensure that the chosen buffer 

number is not previously used in either the data_attr_table configuration file or 

associated snippet files.  

 Note 3: The filename should be kept relatively short. The specific limit on the linear buffer 

filename appears to be 199 characters for the complete pathname of the file 

 (#define MAX_LBNAME_SIZE 200 in orpgda.c). 

 

 

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 45 of 202 

 

Part C. Adding Tasks and Product Data Stores  
 

In addition to writing an application that correctly uses the appropriate interface to the ORPG services 

(using the API), the ORPG must be configured for the executable task, the persistent data store (linear 

buffer) for the product, and the output product itself. Currently, this is accomplished by editing three 

configuration files. The configuration of public non-product data stores is covered in Part D. 

IMPORTANT: Use caution when editing these tables to retain the matching of open and close 

braces. Syntax errors in the configuration tables will result in incorrectly configured algorithms and can 

also prevent the ORPG from launching.  

 

The example provided here is a simple task that inputs base data and outputs a final product. Algorithms 

made up of multiple tasks connected through intermediate products require corresponding configuration 

file entries for each task and product in the chain.  

 

 

Build 11 ORPG change.  

 task_attr_table  

o  The attribute data_stream can be used to configure a task as using the replay 

data stream when there is no corresponding instance using the real-time data 

stream.  This attribute is normally not used. 

 Documented that most warehoused products also have a priority of 255, a combination 

which support replay instances of tasks.  The one exception is an intermediate product 

that is either an optional input or an input to an task that uses the WAIT_ANY form of 

control loop. 

 

 

 

1. Preparation - Defining Configuration Parameters 

 
The necessary parameters should be determined in advance.  

 

In this example there are two input products for the task (RECCLDIGREF and RECCLDIGDOP) and two 

output products (RECCLREF and RECCLDOP) for the task.  However RECCLDIGREF is the only input used 

for the final product (RECCLREF) in our example.  See the contents of the product_attr_table file for 

this example. 

 

The parameters used in this example are:  

 

ITEM  VALUE  

task parameters 
for the task to be added  

<Executable_Name> Note 1  recclprods  

<Task_Name> Note 1  recclprods  



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 46 of 202 

input data parameters 
of an existing product  

<Prod_Registration_Name> Note 2, 6   RECCLDIGREF  

<Prod_Buffer_Number> Note 3, 5 298  

output data parameters 
for the product being added  

<Prod_Buffer_Name> Note 2, 6 RECCLREF 

<Prod_Registration_Name> Note 2, 6  RECCLREF  

<Prod_Buffer_Number> Note 3, 5  132  

<Product_Code> (final product) Note 4, 5  132  

<LB_filename>  recclprodsref.lb 

   Note 1: The <Executable_Name> and the <Task_Name> are typically the same. There are 

specific cases where they differ and this involves having two different tasks (each 

with a unique <Task_Name>) having the same <Executable_Name>. Using multiple 

instances of a task is discussed in step 2 - Configuring a New Task. 

   Note 2: Though not required, it is recommended that the unique <Prod_Buffer_Name> 

be used for the <Prod_Registration_Name>. Using this standard name for the 

product ID makes it easier to view and understand the data flow of multiple 

algorithms.  

   Note 3: Safe linear buffer numbers for new products are any unused number from 131-

1999. See the product_attr_table configuration file (including any snippet files 

in the extensions directory) to determine appropriate unused buffer numbers.  

   Note 4: Safe product codes for new final products are any unused code from 131 - 1999 and 

are identical to the linear buffer number. Intermediate products (not distributed 

outside the ORPG) are assigned a product code of 0.  

   Note 5: Though any unused buffer number between 131 and 1999 can be used, the 

block 1940-1989 has been reserved for development and can be used without 

the risk of being stepped on by newly integrated algorithms. Buffer numbers 

1990-1999 are reserved for CODE sample algorithms.  

 Note 6: Maximum length for <Prod_Buffer_Name>, <Prod_Registration_Name>, 

<Executable_Name>, <Task_Name> and <LB_filename> is covered above in Part 

B. Configuration and Naming Issues 

 

 

 

 

2. Configuring a New Task  
 

Task Attribute Table in the $HOME/cfg/task_attr_table file 

 

This file contains the task attribute table. In the operational system there is an entry in this table for 

every ORPG task. For development tasks, the configuration should always be made in a 'snippet' 

file rather than directly in the task_attr_table configuration file. The following paragraphs 

provide a brief discussion of these parameters with respect to this configuration example. A basic 

(however incomplete) description of these attributes is provided at the beginning of the 

task_attr_table configuration file.  If any changes are made to the task_attr_table file, ensure a 

backup copy is saved. 
 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 47 of 202 

The following figure is copied from the task_attr_table configuration file.  

 

Task recclprods {   

    filename        recclprods 

    input_data      RECCLDIGREF(298) RECCLDIGDOP(299) 

    output_data     RECCLREF(132) RECCLDOP(133) 

    desc            "Radar Echo Classifier Clutter Likelihood Products" 

    args 

                    0 "" 

} 

 

 

Attribute Descriptions  

 
Task name  

The <Task_Name> is entered before the opening bracket of the table entry of the task, 

immediately after the keyword Task. If the <Task_Name> is not specified, the value of the 

filename attribute is used.  This is a logical task name used by the ORPG infrastructure.  The 

prefix 'replay_' is reserved for a special purpose.  

 
filename  

The attribute filename refers to <Executable_Name> which is the name of the executable 

binary file.  Though the maximum length of the <Executable_Name> is not documented, it is 

recommended not to exceed 25 characters.  

 
input_data  

A list of short product names (<Prod_Registration_Name>) followed by numbers in 

parentheses which are the corresponding (<Prod_Buffer_Number>)s. There is one pair of names 

and id's for each of the input data. For a data driven algorithm having more than one input, the 

"driving input" must be first in the list.  

 
output_data  

A list of short product names (<Prod_Registration_Name>) followed by numbers in 

parentheses which are the corresponding (<Prod_Buffer_Number>)s. There is one pair of names 

and id's for each of the output data.  

 
desc  

The desc attribute is a brief description of what the task does - recommended 64 characters 

maximum. 

 
data_stream (normally not used) 

 

This is a special purpose attribute.  The value 1 specifies the input data stream is real-time and 

the value 2 specifies that the replay data stream is used.  If the attribute is omitted, real-time is 

assumed.  The normal method of specifying a replay instance of a task is to have a separate entry 

with a <Task_Name> identical to the real-time task with a prefix replay_.  This attribute must be 

used to specify the replay data stream for tasks having no real-time stream counterpart. 

 
args  



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 48 of 202 

The args attribute lists the command line arguments used when the ORPG task is launched 

following an ordinal instance number. An entry of 0 for the instance number represents the first 

(and in this example, the only) instance of a task. For algorithm tasks the arguments should 

normally be  0 "".  

 

 

Using Multiple Instances of a Task  

A mechanism is provided to configure multiple instances of an algorithm task and involves 

having multiple entries in the Task Attribute Table (task_attr_table file) using a different 

logical task name for each entry.   

 

1. The primary purpose of this technique is to configure a 'replay' instance of a task.  In this case 

a second entry for the task is used with a special task name which has the prefix 'replay_' 

added to the first task name.  All other attributes of the replay task configuration are identical 

to the first task. Tasks having a replay instance must either ingest the original (recombined) 

base data or warehoused intermediate products whit 255 priority.  See Responsiveness to 

One-Time Requests in Part A of this document. 

 

2. This technique can also be used to facilitate algorithm development / debugging by providing 

a means of having multiple instances of a task with different inputs / outputs using one set of 

source code. This technique is normally not needed (or useful) for operational algorithms, 

though it is used for those legacy tasks reading the replay data stream.  This technique does 

have an impact on resource overhead.  Using a different <Task_Name> and 

<Executable_Name> to create multiple instances of a task is also demonstrated in CODE 

sample algorithm 1. 

 

Recommendation:  

 

If multiple instances are considered for operational use, approval must be granted based on a 

cost/benefit analysis presented during the Design Approach Review. 
 

 

 
 
Operational Process List in the $HOME/cfg/task_tables file  

 
The only portion of this file that concerns an algorithm developer is the section titled 

Operational_processes. For development tasks, the configuration should always be made in a 

'snippet' file rather than directly in the task_tables configuration file.  Here the task's 

<Task_Name> must be included in the list in order for the task to launch when the ORPG is started.  If 

the <Task_Name> is different than the <Executable_Name>, the task is launched with a -T option. For an 

example, look at the execution commands for the replay tasks in the output of the mrpg -v startup 

command.  If any changes are made to the task_tables file, ensure a backup copy is saved. 

 

When multiple instances of a task are configured in the task_attr_table configuration file, they must 

be listed individually in the task_tables configuration file.  See the replay tasks in the following 

extract from task_tables. 

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 49 of 202 

Operational_processes { 

# DE-ACTIVATED FOR CODE     

#   cm_ping    

   . 

   . 

   basrflct 

   . 

   . 

   recclprods 

   user_sel_LRM 

   . 

   . 

 

# Replay input data stream tasks follow 

   replay_basrflct 

   . 

   . 

   replay_user_sel_LRM 

} 

 

 

If the algorithm task is not launched when the ORPG is started it can be launched from the command 

line with a simple command such as: recclprods. It should be noted however that because of the 

integrated nature of the ORPG services, an algorithm task must be 'installed' into the appropriate 

directory to be launched. Executing the compiled binary in the source code directory tree will not work.  

 

 

 

3. Configuring a New Product  
 

Product Attribute Table in the $HOME/cfg/product_attr_table file  

 

The product attribute table contains parameters associated with both final products and intermediate 

products. In the operational system there is an entry in this table for every ORPG product. For 

development products, the configuration should always be made in a 'snippet' file rather than 

directly in the product_attr_table configuration file.  The following paragraphs provide a brief 

discussion of some of these parameters with respect to this configuration example. A basic (however 

incomplete) description of these attributes is provided at the beginning of the product_attr_table 

configuration file. If any changes are made to the product_attr_table file, ensure a backup copy 

is saved. 
 

The following figure is copied from the product_attr_table configuration file.  

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 50 of 202 

    Product {   

    prod_id         132 RECCLREF 

    prod_code       132  

    gen_task        recclprods 

    wx_modes        7 

    disabled        0 

    n_priority      4 

    priority_list       70 70 70 70 70 

    n_dep_prods     1 

#   dependent products: RECCLDIGREF 

    dep_prods_list      298 

    desc        "CLR Clutter Likelihood Reflectivity: 11 level/0.54 nm" 

    type            1 

    alert           0 

    warehoused      0 

    elev_index      2 

    path            base/recclprodsref.lb 

    lb_n_msgs       10 

# NOTE: Final products are links to product data base 

    max_size        96 

    params 

                2 -20 3599 0 10 "Elevation" "Degrees" 

    } 

 

 

Attribute Descriptions  
 

We do not provide detailed guidance for all attributes listed. Some attributes (e.g., priority_list) 

need only to have representative values assigned prior to the final integration onto the operational 

system. Others (like alert) only apply to unique circumstances. Some attributes are always set to a 

specific value for normal products (e.g., disabled).  Others are specific to base data or radial data and 

are not described here (e.g., class_id, class_mask,  warehouse_id,  warehouse_acct_id).   
 

The following attributes must be defined carefully in order for the algorithm to run in the ORPG 

environment.  

 
prod_id  

The prod_id attribute indicates the <Prod_Buffer_Number> of the product. In addition, a 

<Prod_Buffer_Name> is listed. Though no longer used by the ORPG infrastructure, it is 

recommended the attribute <Prod_Buffer_Name> be maintained as a convenient handle for 

referring to the product.  

 
prod_code  

A prod_code of 0 is used for intermediate products. For new final products this value is the 

same as the <Prod_Buffer_Number>  

 
gen_task  

The gen_task entry includes the logical name <Task_Name> (not the <Executable_Name>) 

corresponding to the task generating the product.  
 

wx_modes  

Set this value to 7 which indicates the product can be produced in all weather modes. This value 

may be changed when the product is integrated into an operational system. Precipitation(=4), 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 51 of 202 

Clear Air(=2), and Maintenance(=1) modes.   

 
disabled  

Set this value to 0 (=no).   

 
n_priority  

Set n_priority to 4 (one for each weather mode and a default)  

 

priority_list    <N1>   <N2>   <N3>   <N4>  

Enter a representative value (e.g., 75) for default value, maintenance mode, precip mode, and 

clear air mode in that order.  This value may be changed when the product is integrated into an 

operational system.  

NOTE: Entering the maximum value [255 255 255 255] results in the product always being 

scheduled for generation. A priority of 255 is used with the warehoused attribute to support 

replay tasks.  There is one warehoused product that does not have a priority of 255 (this 

particular product does not require always being generated because it is either an optional input 

or an input to an algorithm using the WAIT_ANY form of the control loop).  

 
compression  

The compression attribute determines whether the product is compressed. If this attribute is 

missing or set to 0, the product is not compressed. If set to 1, bzip2 compression is applied. If set 

to 2, zlib compression is applied. Intermediate products can be compressed in addition to final 

products. Only bzip2 compression, 1, should be used for final products.  

 
n_dep_prods  

The product attribute table entry also includes a reference to other products used as inputs to the 

algorithm. The n_dep_prods attribute indicates the number of required product data inputs, in 

this case 1.  

 
dep_prods_list  

The buffer numbers (<Prod_Buffer_Number>) for required product data input(s) are listed after 

the n_dep_prods attribute. Optional product data should be included here (there is one existing 

case where this is not done which should be ignored). Another configuration that should not be 

used as an example is product 156, NTDA_EDR, which configures the other output of the task as a 

dependent input for this product. 
 

# dependent_products:  

This is actually a comment line rather than an attribute. The short product names 

(<Prod_Buffer_Name>) corresponding to the numbers in the dep_prods_list only serve to 

make the configuration more readable.  

 
n_opt_prods  

(Recently added attribute) It is possible to designate non-driving dependent inputs as optional 

inputs. The n_opt_prods attribute indicates the number of optional inputs, if any. Configuration 

of optional inputs is discussed further below.  

 
opt_prods_list  

(Recently added attribute) The <Prod_Buffer_Number> for the optional input(s) are listed after 

the opt_prods_list attribute. Configuration of optional inputs is discussed further below.  

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 52 of 202 

desc  

The desc attribute is a brief description of the product - recommended 64 characters maximum. 

There are two forms of this attribute.  

 For final products the first character after the opening quote is not white space, the initial 

characters (all upper case) up to the first white space represent a product mnemonic, which is 

used by hci display screens. Currently the mnemonic is limited to 3 characters. The 

remainder of the text string is the product description.  

 For intermediate products the first character after the opening quote is white space (and is 

discarded), the remainder of the string represents the product description without a product 

mnemonic.  
 

type  

The type attribute refers to the frequency that the product is generated.  

 Base data are type 5 for "Radial".  

 Most meteorological products are either type 0 for "Volume" or type 1 for "Elevation". 

 Products that are not produced on a regular schedule are type 3 for "On Demand" and this 

type is normally not used for meteorological products based upon volumetric data (base 

data).  Algorithms can output "On Demand" products even if not requested.  

SPECIAL CASE: If you have a product that is based upon volumetric data that is NOT 

produced every elevation or volume, consider using "Volume" type for the following reason. 

If this task reads an "Elevation" intermediate product rather than base data, defining the 

output product as "Volume" type rather than "On Demand" will ensure all elevations of the 

intermediate product are scheduled for generation.  

The following types are either not supported or recommended for general use. 

 There are no "Time" products or "External" products in the legacy system. "Time" products 

are not yet supported by the ORPG. 

 There is a special case of "On Request" products that is not recommended for general use. 

 A detailed discussion of product data types used for algorithm input and output and how they 

are related to each other is provided in Volume 3 , Document 3, Section I Part C. 

 

The type attribute determines the actual data timing for product. The input/output data type 

definitions in rpg_port.h are used by the infrastructure and some deprecated API 

registration functions.   The values for the type attribute are related to (but not the same as) 

the input/output data type definitions in rpg_port.h.  See the topic "Input / Output 

Registration" in Volume 3, Document 2, Section I, Part A. 
 

alert  

Set this value to 0.  Products can be paired with defined alert conditions and generated when the 

alert threshold is exceeded.  The topic of alerting is beyond the scope of this document. 

 
warehoused  

One purpose of warehoused products is to support one-time requests using historical data (tasks 

having replay instances).  In this case the priority in priority_list is set to 255.  The 

warehoused attribute is only set for intermediate products (and some base data types). A normal 

value of 0 stipulates that the intermediate product is not warehoused. Any value greater than 0 

means the intermediate product is warehoused with a retention time (in seconds) specified. 

Warehoused intermediate products are stored in the product database linear buffer rather than the 

individual linear buffer. When warehoused, the configuration of the lb_n_msgs and the 

max_size attributes are the same as final products.   

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 53 of 202 

elev_index  2  

The elev_index attribute should be used with all elevation final products and should always be 

set to 2. See the special note below concerning configuration of elevation products. This attribute 

should be absent for all other products.  

 
path  

The path attribute specifies the existing subdirectory under the ORPG data directory ($ORPGDIR) 

in which the linear buffer is created and the name of that file (<LB_filename>).  

 
no_create  DO NOT USE 

This attribute is NOT used with normal product configuration.  
 

lb_n_msgs and 
max_size  

The lb_n_msgs and the max_size attributes determine the size of the product specific linear 

buffer.  The maximum size of the linear buffer is based upon two limitations.  There can be no 

more that 32K messages in a buffer and the file system limit of 2 GB on the size of a file. 

 For final products (and warehoused intermediate products) typical values for lb_n_msgs 

are 10 for volume products and 40 for elevation products, and max_size is set to 96. This 

indicates that 10 / 40 messages of 96 bytes are in the product specific linear buffer. The 

max_size of 96 bytes represents an internal header that is created for all product messages. 

This header includes a reference into the product database where the final product is actually 

stored.  

 For intermediate products, the max_size attribute must be larger than the maximum 

possible size of the product (including the 96 byte header). Recommend an initial 

configuration of 5 messages (lb_n_msgs) for volume intermediate products. For elevation 

intermediate products, the minimum number of messages (lb_n_msgs) should be no less than 

the maximum number of elevations in a volume (currently 20). If fewer messages are 

configured, it can cause the algorithm task to be shutdown by the infrastructure during a 

volume restart.  

 If lb_n_msgs is not specified a default value of 10 is used.  

 A max_size of 0 is a special case and is not used with normal products. 

 
params  

The params attribute provides a description of the product dependent parameters used in the 

product request message. Except for the elevation angle parameter, the params attributes are 

defined only for final products.  

 All parameters used in the request message for a product (including all elevation based 

products) must be defined here, otherwise the product will not be distributed. Product 

dependent parameters 1 - 6 correspond to params 0 - 5 in the product attribute table.  

 Configuration of elevation intermediate products is a special case (see the special note 

below).  

Comprehensive guidance concerning product dependent parameters is included in CODE Guide 

Volume 2 Document 3 Section IV - Application Dependent Parameters. A few examples are 

provided here.  

 

 

Additional description of the params attribute  

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 54 of 202 

In the following example, the first two parameters (like most parameters) have a straight forward 

interpretation. params 0 (product dependent parameter 1) represents Azimuth from 0 to 359.9 degrees 

in tenths of a degree (0 degrees is the default). params 1 (product dependent parameter 2) represents 

Range from 0 to 124.0 NM in tenths of a NM (0 NM is the default). The third parameter representing 

elevation (the most common parameter in the system) is a special case.  

 

params 

        0     0   3599      0      10   "Azimuth"    "Degrees" 

        1     0   1240      0      10   "Range"      "Nmiles" 

        2   -20   3599      0      10   "Elevation"  "Degrees" 

      index  min   max   default  scale   name        units 

 

The elevation parameter must be used with all elevation final products. It's use is optional but 

recommended for elevation intermediate products. The elevation parameter is always params 2 and is 

interpreted as follows.  

 

The elevation is scaled in units*10 and can range from -2.0 units (-20) to plus 359.9 units (3599). The 

default value is 0 units. The actual interpretation is not that simple. Negative numbers actually represent 

slices rather than angles and the scale is not applied. This means -4 (unscaled) represents the first 4 

elevations in a volume and -20 (unscaled) represents the first 20 elevations in a volume. Scaling is 

applied to positive numbers. Small positive numbers represent positive elevation angles (34 represents + 

3.4 degrees) and a very large positive number represents negative elevations (3595 represents - 0.5 

degrees). Note: It is not clear where the transition between representing positive angles and negative 

angles occurs. According to the ICD for RPG to Class 1 User, the maximum negative angle is -1.0 

degrees and the maximum positive angle is 45.0 degrees. Currently the radar does not scan at negative 

elevation angles.  

 

 

Special Note concerning configuration of Elevation Products 

Guidance in this area has evolved. The latest was provided with Build 9.  

A final product that is elevation based must be configured using both the elev_index 2 attribute 

and the params 2 definition of the elevation parameter.  

Elevation based intermediate products can be configured in two ways: using both the 

elev_index attribute and the params 2 definition of the elevation parameter and not defining 

either of these attributes.   

Using these attributes for the configuration of elevation intermediate products is OPTIONAL 

but is recommended because in certain situations this saves resources. 

In either case, when a down-stream volume product is requested all elevations of the 

intermediate product are scheduled for generation. If all down-stream consumer tasks create 

elevation products, only those elevations requested are scheduled for generation.  
 

 

Comprehensive guidance concerning product dependent parameters in the request message and their 

relationship to the product dependent parameters in the final product message is included in CODE 

Guide Volume 2 Document 3 Section IV - Application Dependent Parameters.  



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 55 of 202 

 

Detailed Instructions for the Configuration of Optional Inputs 

There are two mechanisms for configuring an input as optional.  

1. New Method: 
Including the product id (<Prod_Buffer_Number>) in the opt_prods_list of the 

product_attr_table file and setting n_opt_prods accordingly. A default block time of 

5 seconds is used. 

2. Original Method: 
Using the RPGC_in_opt_by_name() registration command in the algorithm. This method 

allows a non-default block time to be specified.  

Factors in Selecting the Method.  
Current Recommendation: 

The new method of listing the optional product IDs in the opt_prods_list attribute is 

recommended.  The default block time of 5 seconds typically suffices.  If there is a need 

to increase block time, the function RPGC_in_opt_by_name() can be called in the 

algorithm. 
 

 

 

4. Configuring Product Generation  
 

Default Product Generation List in the $HOME/cfg/product_generation_tables 

 

The following description of the default generation table is taken from the beginning of the 

product_generation_tables configuration file.  

 

prod_id: product ID - the product buffer number 

 

wx_modes: 2 - precip mode; 4 - clear air mode; 6 - precip & clear air  

 

gen_pr: generation period in number of volume scans 

 

stor_retention: storage retention time in minutes 

 

p1 - p6: product dependent parameters. 

 

NOTE: If product is elevation-based, the elevation parameter can specify 

      either a single elevation or multiple elevations. The format must 

      be one of the following: 

 

      "xx-yy" or "yy"  

 

      where "xx" is either 

  

           10 - all elevation cuts of the VCP are requested.  The  

                parameter entry should read "10-0" in this case. 

 

           01 - All elevations at and below the specified angle (defined by 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 56 of 202 

                "yy") are requested.  The format of the angle is defined 

                below. 

  

           11 - The lowest number of cuts (define by "yy") are requested. 

 

           00 - A single elevation (define by "yy") are requested.  The 

                format of the angle is defined below. 

  

      The format of "yy" if "yy" denotes a single elevation angle, is  

      (degree * 10) for positive angles or (3600 + degree * 10) for  

      negative angles. 

 

NOTE: If using "xx-yy" format, there can not be any white space within the 

      specification unless the specification is quoted (e.g., xx - yy is  

      incorrect, while xx-yy and "xx - yy" are correct). 

 

When entering the elevation slice parameter for a product which is to  

generated for different weather modes, unless the product is to be  

generated for the exact elevation slices, separate entries for each weather 

mode should be made.  Furthermore, if the elevation slice parameter  

specifies a range of elevations, then the same product can not be entered  

for a specific elevation slice unless the product is for a different  

weather mode. 

 
 

Fully integrated algorithms do not produce products unless their output product is requested. One way of 

insuring this is to add an entry for the final product to the default product generation table in the 

product_generation_tables file. If any changes are made to the product_generation_tables 

file, ensure a backup copy is saved. 
 

An entry in the table below (for our example product id 132) must be added because this product is 

not generated by default in the operational system. The entry includes the value 11-4 for the p3 product 

dependent parameter. For elevation based products this means the 4 lowest elevation cuts are always 

generated. 

 

Default_prod_gen { 

#prod_id wx_modes gen_pr stor_reten  p1    p2    p3    p4    p5    p6 

     2       6       1     180       UNU   UNU  01-45  UNU   UNU   UNU 

     4       2       1     180       UNU   UNU  11-3   UNU   UNU   UNU 

     4       4       1     180       UNU   UNU  11-3   UNU   UNU   UNU 

     7       4       1     180       UNU   UNU  11-1   UNU   UNU   UNU 

     8       6       1     180       UNU   UNU  11-1   UNU   UNU   UNU 

     9       4       1     180       UNU   UNU  11-3   UNU   UNU   UNU 

    10       6       1     180       UNU   UNU  11-4   UNU   UNU   UNU 

    .                                 .                             . 

   132       6       1     180       UNU   UNU  11-4   UNU   UNU   UNU 

    .                                 .                             . 

   151       6       1     180       UNU   UNU   UNU   UNU   UNU   UNU 

   152       7       1     360       UNU   UNU   UNU   UNU   UNU   UNU 

   298       6       1     180       UNU   UNU  10-0   UNU   UNU   UNU 

   301       6       1     180       UNU   UNU  10-0   UNU   UNU   UNU 

    } 

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 57 of 202 

 
 

Note:  Product dependent parameter p3 in the default generation table corresponds to params 

2 in the product attribute table.  

 

 

5. The task_attr_table, task_tables, and product_attr_table snippets  
 

New products and tasks should always be configured without editing the product_attr_table, 

task_attr_table, and task_tables configuration files directly. To use this method, special 

"snippet" files are placed into a subdirectory named extensions under the ~/cfg directory. The naming 

conventions for the snippet files are product_attr_table.NNNNN, task_attr_table.NNNNN, and 

task_tables.NNNNN where the suffix "NNNNN" is any meaningful string.    
 

For the CODE sample algorithms, all configuration information is collected into one set of snippet files 

(task_attr_table.sample_snippet, task_tables.sample_snippet, and 

product_attr_table.sample_snippet).  However, in several situations the proper approach is to 

have a set of snippet files for each task and the products which are outputs from that task.  In this case 

the suffix could be the <Task_Name>.  This approach should be used when providing source code to 

another organization (including the ROC for integration into the ORPG) and when using a configuration 

management system requiring code check in and checkout. 

 

The following examples contain the configuration entries for the CODE sample algorithm 1.  

 

The task_attr_table snippet contains all of the information that would be placed into the task 

attribute list:  

 

## Added for CODE 

    Task sample1_base {   

        filename        sample1_dig 

        input_data      SR_REFLDATA(78)  

        output_data     SR_DIGREFLBASE(1990) 

        desc            "Create Sample 1 Product - 256-level Base Reflectivity" 

        args 

                        0  

    } 

 

    Task sample1_raw {   

        filename        sample1_dig 

        input_data      REFL_RAWDATA(66)  

        output_data     SR_DIGREFLRAW(1995) 

        desc            "Create Sample 1 Product - 256-level Raw Reflectivity" 

        args 

                        0  

    } 

 

Notice that for sample algorithm 1 there are two entries for the executable task sample1_dig with the 

unique task names sample1_raw and sample1_base. The algorithm determines under which name it 

was launched and uses different input and output registrations.  

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 58 of 202 

The task_tables snippet contains all of the information that would be placed into the operational 

process list:  

 

Operational_processes { 

 

    sample1_base 

    sample1_raw 

 

} 

 

Sample algorithm executable sample1_dig is started twice using the configured task names 

sample1_base and sample1_raw.  

 

 

The product_attr_table snippet contains all of the information that would be placed into the product 

attribute list:  

 

## Added for CODE 

    Product {   

        prod_id                 1990     SR_DIGREFLBASE 

        prod_code               1990 

        gen_task                sample1_base 

        wx_modes                7 

        disabled                0 

        n_priority              4 

        compression             1 

        priority_list           89 89 89 89       

        n_dep_prods             1 

#       dependent products:     SR_REFLDATA 

        dep_prods_list          78       

        desc           "S1 Sample 1 - SR Base Reflectivity: 256 level/0.13 nm" 

        type                    1 

        alert                   2 

        warehoused              0 

        elev_index              2 

        path                    base/sample1_base_refl.lb 

        lb_n_msgs               10 

# Note: Final products are links to product database. 

        max_size                96 

        params 

                                2 -20 3599 0 10 "Elevation" "Degrees" 

    } 

 

## Added for CODE 

 

    Product {   

        prod_id                 1995     SR_DIGREFLRAW 

        prod_code               1995 

        gen_task                sample1_raw 

        wx_modes                7 

        disabled                0 

        compression             1 

        n_priority              4 

        priority_list           89 89 89 89       

        n_dep_prods             1 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 59 of 202 

#       dependent products:     REFL_RAWDATA 

        dep_prods_list          66       

        desc           "S1 Sample 1 - SR Raw Reflectivity: 256 level/0.13 nm" 

        type                    1 

        alert                   2 

        warehoused              0 

        elev_index              2 

        path                    base/sample1_raw_refl.lb 

        lb_n_msgs               10 

# Note: Final products are links to product database. 

        max_size                96 

        params 

                                2 -20 3599 0 10 "Elevation" "Degrees" 

    } 

 

Note that the gen_task attribute contains the logical task name, not the executable name, of the task 

creating the product.  

 

The default product generation list contained in the product_generation_tables configuration file is 

not supported by snippets.  

 

 

6. The include files - a309.inc and a309.h  
 

There is no longer a reason to modify these files. The new "by_name" product buffer access API 

functions (which should be used with all new algorithm development) eliminate the need to modify 

these files.  

 

With new algorithm development, do not rely on the definitions in a309.h that map buffer numbers (or 

product ID) with product names as these are no longer maintained by the ROC. 

 

 

7. Make backup copies of all modified configuration files  
 

Note: These files are overwritten every time the complete ORPG is compiled.  

 

 

 

8. Erase appropriate files in the ORPG data directory  
 

For configuration changes to be recognized, certain data files in $ORPGDIR must be rebuilt during the 

next ORPG launch. This can be accomplished by using the -p option when starting the ORPG which 

deletes the contents of the product database, message logs, adaptation data, etc.  

 

 

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 60 of 202 

 

Part D. Non-product Data Stores  
 

 

Configuration of Public Non-Product Data Stores  

 

1. Preparation  
 

The necessary parameters should be determined in advance.  

 

ITEM  VALUE  

data parameters 
for the buffer being added  

<Data_Buffer_Name>  SAAUSERSEL  

<Data_Buffer_Number>  300000  

<Buffer_filename>  SAAUSERSEL.DAT  

 

 Maximum length for <Data_Buffer_Name> is assumed to be 15 characters.  

 There is no reserved block of data buffer numbers that can be used for development. The 

developer must ensure that the number and name have not been previously used in the 

data_attr_table configuration file or associated snippet file. 

 

2. The $HOME/cfg/data_attr_table configuration file  
  
Data stores configured in the data_attr_table configuration file are considered Public ORPG data 

stores. They are created automatically upon startup and managed like product data stores. Private non-

product data stores are not configured in data_attr_table and are standard disk files controlled by the 

algorithm.  

 

Public non-product data stores are configured in a similar manner to product data stores by using the 

data store attribute table in the data_attr_table configuration file. For development data stores, the 

configuration should always be made in a 'snippet' file rather than directly in the 

data_attr_table configuration file.   A more complete reference for non-product data attributes 

remains to be developed. If any changes are made to the data_attr_table file, ensure a backup 

copy is saved. 
 

The following figure is copied from the data_attr_table configuration file.  

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 61 of 202 

    Datastore { 

        data_id         300000 SAAUSERSEL 

        path            snow/SAAUSERSEL.DAT 

        persistent 

        Lb_attr { 

            remark      "SAAUSERSEL.DAT" 

            msg_size    0 

            maxn_msgs   31 

            types       "LB_REPLACE" 

            tag_size    32 

        } 

    } 

 

We do not provide detailed guidance for all attributes used in the data_attr_table file. Only those 

attributes and attribute values that are meaningful for use in configuration of an algorithm non-product 

data store are described.  

 
data_id  

The data_id attribute indicates the <Data_Buffer_Number> and the internal name, 

<Data_Buffer_Name>, of the non-product data.  Though the limit is not documented, keep the 

<Data_Buffer_Name> a maximum of 25 characters. 

 
path  

The path attribute specifies the existing subdirectory under the ORPG data directory ($ORPGDIR) 

in which the linear buffer is created and the filename of that file (<Buffer_filename>).  

 
persistent  

If this attribute is specified, the data store is not erased during a ORPG start using mrpg -p 

startup.  

 
Lb_attr  

The following attributes actually configure the linear buffer file behavior.  

     

   

remark  

For the purposes of algorithm data stores, the remark usually is a string containing the 

filename. The maximum length of the string is 63 characters (not including the enclosing 

quotes).  
Note 1

 

 
msg_size  

Using 0 as the message size configures the buffer for varying length messages. This 

typically is used for message database type linear buffers. It permits the buffer to be a 

variable size while containing messages of different sizes. If a value other than 0 is 

specified, it represents the average size of messages in bytes. This is typically used for 

message queue type buffers.  
Note 2

 

 
maxn_msgs  

The maximum number of messages that a buffer may contain. If the msg_size is not 0, then 

this attribute along with msg_size determines the size of the buffer file (typically with a 

message queue type buffer).  If not specified, a default value of 40 is used.  
Note 2

 

 
types  

Their are several values that can be OR'd together to determine the buffer type. For the 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 62 of 202 

purposes of an algorithm non-product data store most of the defaults are appropriate.  

The type LB_DB (replacing the LB_REPLACE type) configures the buffer as a message 

database type buffer. LB_DB can exhibit either the behavior of the LB_REPLACE or 

LB_MSG_POOL type.  For details see Part I Non-Product Data Access in Volume 3, 

Document 2, Section II. 

The default is a message queue type linear buffer (LB_QUEUE) 

 
tag_size  

This attribute can be omitted.  

Note 1: The maximum length is defined by the value of 

LB_REMARK_LENGTH 64 in lb.h. 

Note 2: The maximum size of the linear buffer is based upon 

two limitations.  There can be no more that 32K 

messages in a buffer and the file system limit of 2 

GB on the size of a file. 

 

 

3. The data_attr_table snippet file.  
 

New non-product data stores should always be configured without editing the data_attr_table 

configuration file directly. To use this method, special "snippet" file as described under item 5 in Part 

C. Adding Tasks and Product Data Stores.  

 

The following example contains the configuration entries for a future CODE sample algorithm.  

 

    Datastore { 

        data_id     399999 SAMPLE5_ENVIRON_DATA 

    path        sample_alg/environ_data.lb 

    persistent 

        Lb_attr { 

        remark      "SAMPLE5_ENVIRON_DATA" 

            msg_size    0 

            maxn_msgs   2 

            types   "LB_REPLACE" 

        } 

        write_permission { 

            2   sample5 

            *   * 

        } 

    } 

 

The write_permission attribute means that only task sample5 can write message ID 2 in the data 

store. Any task can write all other message IDs.  

 

4. The include files - orpgdat.h and orpgdat.inc  
 

The include files, orpgdat.h and orpgdat.inc, do not have to be modified in order for the new 

algorithm task to run in the ORPG environment. However, when the algorithm is formally integrated 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 63 of 202 

into the operational system these changes are made for non-product data stores.  If any changes are 

made to the orpgdat.h file, ensure a backup copy is saved. 

 

 

The only known consequence of not modifying these files is that the corresponding product buffers must 

be referenced by their number rather than their name when using the API calls. In order to use buffer 

names with the API calls (that is, use a globally defined constant rather than a number for the input 

parameter), the following changes must be made before the algorithm source code and the ORPG code 

is compiled.  

 

When the algorithm is formally integrated into the operational system, these include files are modified to 

include the following changes.  

 

 For algorithms written in FORTRAN, using our configuration example, a parameter SAAUSERSEL 

with value 300000 would be defined in $HOME/include/orpgdat.inc  

 

C* data store for Snow Accumulation Algorithm  

      INTEGER SAAUSERSEL 

      PARAMETER( SAAUSERSEL = 300000 ) 

 

 For algorithms written in ANSI-C, using our configuration example, a constant SAAUSERSEL with 

the value 300000 would be defined in $HOME/include/orpgdat.h  

 

/* Data store to support Snow Accumulation Algorithm */ 

#define SAAUSERSEL                300000 

 

 

Algorithm API Support for Non-Product Data Stores  
 

The algorithm API has supports access of product data stores, non-product data stores, and adaptation 

data. These functions are documented in Volume 3.  

 

Public Non-product Data Stores  
Public data stores are implemented as linear buffers. The algorithm API provides functions to 

open and close the buffers and to read and write messages in the buffers. 

Private Non-product Data Stores  
Private data stores are implemented as standard disk files. The only API support provided is to 

assist in providing the complete path name to the data store.  

 

 
Name and location of non-product data stores  
 

Public Non-product Data Stores  

The name and location (a subdirectory under $ORPGDIR) are specified in the data_attr_table 

configuration entry. The name is usually all upper case letters with a .DAT suffix. 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 64 of 202 

Private Non-product Data Stores  
The location of the file is provided by the API function and is the current ORPG working 

directory ($HOME/tmp).  

 

 

 



Vol 2 Doc 2 Section III - ORPG Configuration for Application Developers                   

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 65 of 202 

 

Part E. Adaptation Data  
 

Instructions for changing site specific adaptation data are included in Section IV of this guide.  

 

Instructions for creating and installing algorithm specific adaptation data are in CODE Guide Vol 2, 

Document 4, Section II - Algorithm Adaptation Data - Configuration & Use.  

 

 

 

 
 



Vol 2 Doc 2 Section IV - The ORPG Development Environment                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 66 of 202 

Vol 2. Document 2 - 

The ORPG Development Environment  

Section IV   Configuring Site Specific Adaptation Data  

 

 

Introduction  
 

The ORPG can produce valid products using Archive II data as its source of radar data. However, site-

related adaptation data from the original site is not passed on the ORPG. Instead, the site adaptation data 

configured on the development ORPG will be used in algorithm processing. This brief guide will 

describe how to modify the adaptation data to make it correspond to the input data source.  

 

This data should be changed because:  

 Antenna location and elevation are part of a valid WSR-88D product header information. This 

information will be incorrect if the site data is not set.  

 If the algorithm depends upon the location and height of the radar, the product itself will contain 

errors.  

 County background maps will not display if the radar location is incorrect.  

The site adaptation data are contained in a text configuration file named site_info.dea. A blockage 

data file provides the beam blockage information caused by nearby terrain and significant man made 

structures. CODE only provides a generic blockage file. If accomplishing precipitation analysis 

requiring this data, it can be obtained from the ROC.  

 

If you are interested, a tabular layout of the site adaptation data for all WSR-88D sites is provided in 

Appendix A. 

 

 

Instructions  

1. The ORPG change_radar utility is used to set the site adaptation data. For change_radar to 

work as intended with the CODE algorithm development environment, the environmental 

variable ORPG_NONOPERATIONAL must be defined (this is accomplished during CODE setup in 

Volume 1 of the CODE guide). 

2. In order to change site adaptation data, execute the change_radar script from the command line 

while logged in to the account into which the ORPG is installed. The four letter ICAO identifier 

is the primary parameter. Two additional parameters are useful in the development environment. 

-S  This optional flag prevents an automatic shutdown of the RPG software (if running).  

 

-R  This flag prevents an automatic restart of the RPG software when the script is finished. This 

flag should always be used in the development environment because the restart command 

used does not include the -p flag.  



Vol 2 Doc 2 Section IV - The ORPG Development Environment                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 67 of 202 

 

For example, if the input data (Archive II tape, Archive II disk files, or BDDS on a LAN) are 

from Melbourne, FL, the command would be:  

change_radar -r kmlb -S -R  

 

The output of the script looks like this:  

 

SITE ADAPTATION DATA HAS BEEN CHANGED TO THE FOLLOWING: 

 

RPG ICAO:       kmlb 

RPG ID:         302 

RDA LATITUDE:   28113 

RDA LONGITUDE:  -80654 

RDA ELEVATION:  116 

This corresponds to the following fields in site_info.dea  

     site_info.rpg_name = KMLB 

     site_info.rda_lat = 28113 

     site_info.rda_lon = -80654 

     site_info.rda_elev = 116 

     site_info.rpg_id = 302 

 

3. In order to replace the existing binary adaptation data files, they must be erased before the next 

ORPG start. This can be accomplished by using the -p option with the ORPG start command: 

mrpg -p startup.   

 

The change_radar utility has other options including the capability to list all supported radars and to 

interactively enter the desired site data. See the man page or execute change_radar -h.  

 



Vol 2 Document 3 WSR-88D Final Product Format                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 68 of 202 

 

Volume 2.  ORPG Application Software 

Development Guide  
 

Document 3.  WSR-88D Final Product Format  

This document contains helpful technical information concerning ORPG internals and also provides 

guidance in certain areas. The information presented here is independent of writing algorithm source 

code but does contain some references to the Application Programming Interface (API). CODE Guide 

Volume 3 - WSR-88D Algorithm Programming Guide contains the tutorial, reference, and sample 

algorithms for the WSR-88D Algorithm API and guidance for the structure of algorithms.  

 

Section  I   Product Block Structure  

 
An introduction to the WSR-88D product ICD format. The high level block structure and the contents of 

the product header information are covered. This section consolidates some of the information contained 

in the Interface Control Document (ICD) for the RPG to Class 1 User, document 2620001.  

 

Section II   Traditional Product Data Packets  

 
The original WSR-88D used over 30 data packets in various ways to construct weather products. There 

are several packets which contain text information and several data packets for drawing vectors or lines 

on the graphic display. Several packets are used to represent special symbols. There is a packet used to 

represent radial data (polar coordinate) intended for display and another to represent raster data 

(rectangular coordinate) intended for display. There is a data packet used to represent 8-bit radial data 

that was not originally intended for display.  

 

Section III  Generic Product Components  

 
This generic data packet (packet 28) can be relatively self-descriptive if correctly used. There are several 

types of grid components that can be used to represent two dimensional binary data. The radial 

component can be used to contain radial data in various formats. The area component can be used to 

represent single geographic points, a geographic line or an enclosed geographic area. The table 

component is used to represent text information in an organized tabular format. The text component is 

used to represent simple text.  

 

Section IV   ORPG Application Dependent Parameters  

 
Application dependent parameters can be used to provide customizing parameters via the product 

request message that can be used to change the nature of the product for that specific request. They can 

also be used to provide additional fields of information in the formatted final product. This section 



Vol 2 Document 3 WSR-88D Final Product Format                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 69 of 202 

explains the relationship between the product specific parameters contained in the request message and 

the product dependent parameters in the product and provides some rules to maintain consistency in use.  



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 70 of 202 

Vol 2. Document 3 - 

WSR-88D Final Product Format  

Section I   Product Block Structure  

 

 
Build 11:   

 Updated the description of the Product Description Block fields in Part C. 

 

 

 

Part A. Introduction  
 

The ORPG transmits products to users in the Graphic Product Message Format described in this 

document. Recently a new concept of structuring the data content of WSR-88D products has been 

introduced resulting in 2 kinds of products.  

1. Traditional Products 
The original WSR-88D used over 30 data packets in various ways to construct weather products. 

There are several packets which contain text information to be used in a very specific manner in 

different parts of the product. There are also several data packets for drawing vectors or lines on 

the graphic display, some for mono color lines and some variable color. Several packets are used 

to represent special symbols and some of these are nested within other packets. There is a packet 

used to represent radial data (polar coordinate) intended for display and another to represent 

raster data (rectangular coordinate) intended for display. There is a data packet used to represent 

8-bit radial data that was not originally intended for display.  

 

One common thread in many of these traditional data packets is that the packet data includes 

display information to some extent. The display content ranges from a specific encoding of 

display labels, using coordinates that assume a specific display screen resolution, and in some 

cases contain pixel size / coordinate information used to draw the specific symbols. 

Guidance for the use of data packets in within the Symbology Block and use of multiple layers 

within the Symbology Block is provided in Section II - Traditional Product Data Packets of this 

document. 

2. Generic Products 
A new type of data packet has been developed that contains no display information. This generic 

data packet (packet 28) can be relatively self-descriptive if correctly used. The generic data 

packet is a collection of generic components each with a different purpose. There are several 

types of grid components that can be used to represent two dimensional binary data in 

rectangular or polar coordinates. The radial component can be used to contain radial data in 

various formats. The area component can be used to represent single geographic points, a 

geographic line or an enclosed geographic area. The table component is used to represent text 

information in an organized tabular format. The text component is used to represent simple text. 



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 71 of 202 

 

A primary advantage of using generic components is the flexibility of the information that can be 

contained in a product without defining new structures or packet types.  Another advantage is 

separation of the look and feel of the display from the product content. One disadvantage is that 

in some cases the display system may require more modification for a new generic product.  

Guidance for the use of data packet 28 within the Symbology Block is provided in Section III - 

Generic Product Components of this document. 

 



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 72 of 202 

 

Part B. Content of Final Products  
 

This recent WSR-88D Product Specification document 2620003t_prod_spec.pdf (located in the --

/pdf_doc/ directory on the CODE CD) contains a detailed description of all final products.  

 

With traditional products this specification can be difficult to interpret if not familiar with the WSR-88D 

documentation. This is due to the document containing information beyond a specification of the 

contents of the products. For example:  

 The specification also includes information reflecting PUP functionality (that is, how the PUP 

displays the products to include screen layouts and actual colors).  

 The term "Product Interactions" describes which products the PUP (or AWIPS) operator can 

overlay on top of the product being described. It would have been better to just define the 

product as either a geographic product (underlay), a geographic overlay product, or a non 

geographic product.  

 Appendix A of the ICD lists standard annotations that are displayed; defines special symbols and 

characters; and for various products, lists what additional annotations are to be displayed on the 

PUP / AWIPS. Much of the material in Appendix B of the ICD is a description of the layout of 

the PUP / AWIPS display screen. Appendix C of the ICD addresses the format of the Tabular 

Alphanumeric Block (TAB) for current products.  

 

 

 



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 73 of 202 

 

Part C. Structure of Final Products 

 
 

The ORPG transmits products to users in the Graphic Product Message formats shown below. The 

format for the Graphic Product is documented in the Interface Control Document (ICD) for the RPG to 

Class 1 User, Document number 2620001. Care should be used when referring to this document because 

the document contains some inconsistencies in the numbering of figures. A recent version is provided in 

the 2620001u_rpg_class1.pdf file located in the --/pdf_doc/ directory on the CODE CD.   

 
A description of the contents of the header fields and the format of the major product blocks is provided 

here.  Guidance for the use of the data packets within the Symbology Block and use of multiple layers 

within the Symbology Block is provided in Section II - Traditional Product Data Packets and Section III 

- Generic Product Components of this document. 

 

There are several principles for the overall structure of WSR-88D final products. 

 

1.  One Message Header Block (MHB) and one Product Description Block (PDB) always precede the 

product data blocks. These two blocks are sometimes called the "product header" in the ICD for the 

RPG to Class 1 User.  

 

2.  The remaining product blocks are called optional blocks and data blocks. Product messages usually 

(but not always) include the Product Symbology Block, and may include the Graphic Alphanumeric 

Block (GAB) and the Tabular Alphanumeric Block (TAB).  

 

3.  Though not all products require all blocks; the blocks are always assembled in the order shown.  

 

4.  Though not explicitly stated in the ICD for the RPG Class 1 User (mandatory requirements): 

a. All 2-byte and 4-byte data fields must begin at an even numbered byte offset from the 

beginning of the product message.   

b. All series of 1-byte data fields must begin at an even numbered byte offset from the 

beginning of the product message. This implies that 1-byte data fields must be used in pairs. 

c. All data length fields used in data packets containing 1-byte data fields must account for an 

even number of 1-byte data fields.  These fields may represent integer data or character data. 

 

5.  Rules for the structure of the layers and data packets within the Symbology Block are provided in 

Section II of this document. 

 

The products are stored in the product database in this format and the ORPG completes the contents of 

the Message Header Block when the products are transmitted.  

 

Documentation Note: Some terms used in the ORPG software have a different (and somewhat 

confusing) meaning when compared with existing documentation. For example, an ANSI-C structure 

named Graphic_Product represents only the MHB and the PDB, not the complete Graphic Product. 

There is another structure named Prod_header that does not refer to the MHB and PDB, but rather to 

another header used by the internal ORPG infrastructure.  

 



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 74 of 202 

 

 

Traditional Product Block Structure 

   Block Name  Halfword Number (2 bytes)             

   

Message Header Block (MHB)  

Product Description Block (PDB)  

Product Symbology Block 

(variable length)  

Graphic Alphanumeric Block (GAB) 

(variable length)  

Tabular Alphanumeric Block (TAB) 
(variable length)  

 

1 - 9  

10 - 60  

5 halfword header plus Data Layers 

containing traditional data packets.  

5 halfword header plus Text Packet 

Pages  

6 halfword header plus additional 

MHB and PDB, plus Character Data 

Pages  

 

 

 
Generic Product Block Structure 

   Block Name  Halfword Number (2 bytes)             

   

Message Header Block (MHB)  

Product Description Block (PDB)  

Product Symbology Block 

(variable length)  

 

1 - 9  

10 - 60  

5 halfword header plus a data layer 

containing data packet 28 (generic 

product data packet)  

 

 

 

The generic product format is relatively new. Formal guidelines for the structure and use of this product 

are evolving. Though not explicitly prohibited, it is recommended that generic products do not contain a 

GAB or a TAB and that the symbology block does not contain any traditional data packets.  

 



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 75 of 202 

 

 

Message Header Block 

 

NOTE: WSR-88D products contain 4-byte, 2-byte, and 1-byte data fields. Since the ORPG is now 

supported on both big Endian and little Endian architectures, the data must be written into the product in 

a very specific manner. Properly accounting for the byte-swapping infrastructure and the alignment of 

data fields is described in CODE Guide Volume 3, Document 3, Section III - Writing Product Data 

Fields.  

 

The Message Header Block is included in all radar messages. It is of fixed length and consists of 9 

halfwords (18 bytes). It contains important details about decoding the rest of the message. A listing of 

WSR-88D message codes (or product codes) is contained in Table III of the RPG to Class 1 User ICD.  

 

The Message Header Block Format  
 

      Contents  Halfword (2 bytes)  

   

MESSAGE CODE  

DATE OF MESSAGE  

TIME OF MESSAGE (MSW)  

TIME OF MESSAGE (LSW)  

LENGTH OF MESSAGE (MSW)  

LENGTH OF MESSAGE (LSW)  

SOURCE ID  

DESTINATION ID  

NUMBER OF BLOCKS  
 

01  

02  

03  

04  

05  

06  

07  

08  

09  
 

 

Message Header Block Field Descriptions 

 

The field descriptions are documented in Figure 3-3 of the ICD for the RPG to Class 1 User. Note that 

the type notations are based on the original FORTRAN documentation. INT*4 represents a 4 byte (32 

bit) integer and INT*2 represents a 2 byte (16 bit) integer.  

 

All date-times are GMT. 

 

   
HALFWORD  

   
FIELDNAME  

   
TYPE  

   
UNITS  

   
RANGE  

PRECISION / 
ACCURACY  

   
REMARKS  

01  Message Code  INT*2  N/A  [-300] to -16, 
0 to +[1999]  

N/A  NEXRAD Message Code 

(or product code) defined in 

Table III of the RPG to 

Class 1 User ICD. Note: 

The original upper limit for 

product codes was 300. This 

has been increased to 1999.  



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 76 of 202 

02  Date of Message  INT*2  Julian Date  1 to 32,767  1  Modified Julian Date at 

time of transmission 

(number of days since 1 

January 1970, where 1=1 

January 1970). To obtain 

actual Julian Date, add 

2,440,586.5 to the modified 

date  

03-04  Time of Message  INT*4  Seconds  0 to 86,399  1  Number of seconds after 

midnight, Greenwich Mean 

Time (GMT).  

05-06  Length of 

Message  
INT*4  N/A  18 to 409856  1  Number of bytes in message 

including header  

07  Source ID  INT*2  N/A  0 to 999  1  Source (originator's) ID of 

the sender  

08  Destination ID  INT*2  N/A  0 to 999  1  Destination ID (receiver's) 

for message transmission  

09  Number Blocks  INT*2  N/A  1 to 51  1  Header Block plus the 

Product Description Blocks 

in message  

 

 

NOTE:  Several fields are modified when the product is distributed.  Prior to distribution the 'Date of 

Message' and 'Time of Message' are product generation time.  After distribution these fields are set to 

the product distribution time.  The Destination ID is '0' prior to distribution.



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 77 of 202 

 

 

Product Description Block  

 

NOTE: WSR-88D products contain 4-byte, 2-byte, and 1-byte data fields. Since the ORPG is now 

supported on both big Endian and little Endian architectures, the data must be written into the 

product in a very specific manner. Properly accounting for the byte-swapping infrastructure and the 

alignment of data fields is described in CODE Guide Volume 3, Document 3, Section III - Writing 

Product Data Fields. 

 

The Product Description Block contains identifying information about the product including the site that 

produced the product and the date and time of production. The contents of many fields within this block 

are product dependent. The use of the 10 product dependent parameters and the 16 data level thresholds 

is discussed in Section IV of this document, ORPG Application Dependent Parameters. The product 

dependent parameters contain the input parameters (if any) in the product request message and also 

return other data. The data level threshold fields are used to define the color tables for many traditional 

products. For products with no defined color table, these parameters have different uses.  

 

 

 

The Product Description Block Format  
 

      Contents  Halfword (2 bytes)  

   

BLOCK DIVIDER (-1)  

LATITUDE OF RADAR (MSW)  

LATITUDE OF RADAR (LSW)  

LONGITUDE OF RADAR (MSW)  

LONGITUDE OF RADAR (LSW)  

HEIGHT OF RADAR  

PRODUCT CODE  

OPERATIONAL MODE  

VOLUME COVERAGE PATTERN  

SEQUENCE NUMBER  

VOLUME SCAN NUMBER  

VOLUME SCAN DATE  

VOLUME SCAN START TIME (MSW)  

VOLUME SCAN START TIME (LSW)  

PRODUCT GENERATION DATE  

PRODUCT GENERATION TIME (MSW)  

PRODUCT GENERATION TIME (LSW)  

PRODUCT DEPENDENT (P1)  

PRODUCT DEPENDENT (P2)  

ELEVATION NUMBER  

PRODUCT DEPENDENT (P3)  

10  

11  

12  

13  

14  

15  

16  

17  

18  

19  

20  

21  

22  

23  

24  

25  

26  

27  

28  

29  

30  



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 78 of 202 

DATA LEVEL 1 THRESHOLD  

DATA LEVEL 2 THRESHOLD  

DATA LEVEL 3 THRESHOLD  

DATA LEVEL 4 THRESHOLD  

DATA LEVEL 5 THRESHOLD  

DATA LEVEL 6 THRESHOLD  

DATA LEVEL 7 THRESHOLD  

DATA LEVEL 8 THRESHOLD  

DATA LEVEL 9 THRESHOLD  

DATA LEVEL 10 THRESHOLD  

DATA LEVEL 11 THRESHOLD  

DATA LEVEL 12 THRESHOLD  

DATA LEVEL 13 THRESHOLD  

DATA LEVEL 14 THRESHOLD  

DATA LEVEL 15 THRESHOLD  

DATA LEVEL 16 THRESHOLD  

PRODUCT DEPENDENT (P4)  

PRODUCT DEPENDENT (P5)  

PRODUCT DEPENDENT (P6)  

PRODUCT DEPENDENT (P7)  

PRODUCT DEPENDENT (P8)  

PRODUCT DEPENDENT (P9)  

PRODUCT DEPENDENT (P10)  

VERSION (MS BYTE) 

SPOT BLANK (LS BYTE)  

OFFSET TO SYMBOLOGY (MSW)  

OFFSET TO SYMBOLOGY (LSW)  

OFFSET TO GRAPHIC (MSW)  

OFFSET TO GRAPHIC (LSW)  

OFFSET TO TABULAR (MSW)  

OFFSET TO TABULAR (LSW)  
 

31  

32  

33  

34  

35  

36  

37  

38  

39  

40  

41  

42  

43  

44  

45  

46  

47  

48  

49  

50  

51  

52  

53  

 54 

   

55  

56  

57  

58  

59  

60  
 

 

 

Product Description Block Field Descriptions  

 

The field descriptions are documented in Figure 3-6 (sheet 6) of the ICD for the RPG to Class 1 User. 

Note that the type notations are based on the original FORTRAN documentation. INT*4 represents a 4 

byte (32 bit) integer and INT*2 represents a 2 byte (16 bit) integer and INT*1 represents a 1 byte integer. 

 

All date-times are GMT.   

 

Note regarding ingest of historical radar data:  When ingesting historical radar data into the ORPG, 

the Generation Data and Time are the current time and the Volume Data and Time are based upon when 



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 79 of 202 

the data was recorded.  The radar data input tool 'play_a2' has a switch to force the Volume Date Time 

to the current date time. 

 

HALF 

WORD  
FIELDNAME  TYPE  UNITS  RANGE  PRECISION / 

ACCURACY  
REMARKS  

10  Block Divider  INT*2  N/A  -1  N/A  Integer value of -1 used to delineate 

the header from the Product 

Description Block  

11 - 12  Latitude of 

Radar  
INT*4  Degrees  -90 to +90  0.001  North (+) or South (-) of the 

Equator, in thousandths of a degree  

13 - 14  Longitude of 

Radar  
INT*4  Degrees  -180 to 

+180  
0.001  East (+) or West (-) of the Prime 

Meridian, in thousandths of a degree  

15  Height of Radar  INT*2  Feet  -100 to 

+11000  
1  Feet above mean sea level  

16  Product Code  INT*2  N/A  16 to 299 

[1999], 

-16 to -299  

N/A  Internal NEXRAD product code of 

weather product being transmitted 

(Refer to Table III of the RPG to 

Class 1 User ICD). Note: The 

original upper limit for product 

codes was 299. This has been 

increased to 1999.  

17  Operational 

Mode  
INT*2  N/A  0 to 2  N/A  0 = Maintenance 

1 = Clean Air 

2 = Precipitation/Severe 

Weather  

18  Volume 

Coverage 

Pattern  

INT*2  N/A  1 to 767  1  RDA volume coverage pattern for 

the scan strategy being used  

19  Sequence 

Number  
INT*2  N/A  -13, 

0 to 32767  
1  Sequence number of the request that 

generated the product (Refer to 

Figure 3-4). For products generated 

by an Alert Condition, sequence 

number = -13  

20  Volume Scan 

Number  
INT*2  N/A  1 to 80  1  Counter, recycles to one (1) every 80 

volume scans  

21  Volume Scan 

Date  
INT*2  Julian 

Date  
1 to 32767  1  Modified Julian Date; integer 

number of days since 1 Jan 1970  

22 - 23  Volume Scan 

Start Time  
INT*4  Seconds 

GMT  
0 to 86399  1  Number of seconds after midnight, 

Greenwich Mean Time (GMT)  

24  Generation 

Date of Product  
INT*2  Julian 

Date  
1 to 32767  1  Modified Julian Date as above  

25 - 26  Generation 

Time of Product  
INT*4  Seconds 

GMT  
0 to 86399  1  Number of seconds after midnight, 

Greenwich Mean Time (GMT)  

27 - 28  -------------------PRODUCT DEPENDENT PARAMETERS 1 AND 2 (SEE TABLE V)------------------------ 



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 80 of 202 

29  Elevation 

Number  
INT*2  N/A  1 to 20*  1  Elevation number within volume 

scan. *Can be up to 25 for TDWR 

radars.  

30 -------------------------PRODUCT DEPENDENT PARAMETER 3  (SEE TABLE V)---------------------------- 

31 - 46  -----------------------------------PRODUCT DEPENDENT (SEE NOTE 1)------------------------------------------  

47 - 53 --------PRODUCT DEPENDENT PARAMETERS 4 THROUGH 10 (SEE TABLE V, NOTE 3)------------- 

54  Version  INT*1  N/A  0 to 255  1  If the message is product data, the 

upper byte is the version number of 

the product. The original format of a 

product will be version 0. (Note 2)  

54  Spot Blank  INT*1  N/A  0 to 1  1  If the message is product data, the 

lower byte is: 

1 = Spot Blank ON 

0 = Spot Blanking if OFF  

55 - 56  Offset to 

Symbology  
INT*4  Halfwords  0 to 400000  1  Number of halfwords from the top 

of message (message code field in 

header) to the -1 divider of each 

block listed. If the offset is zero (0), 

the block is not part of the product in 

question  

57 - 58  Offset to 

Graphic  
INT*4  Halfwords  0 to 400000  1  Same as above to Graphic Block 

(NOTE: For Product 62, this will 

point to the Cell Trend data)  

59 - 60  Offset to 

Tabular  
INT*4  Halfwords  0 to 400000  1  Same as above to Tabular Block  

 

Note 1.  For the description of the use of the 16 threshold level fields, see Appendix C. 

 

Note 2. For a listing of the current product version numbers see Note 2 after Figure 3-6, Graphic Product 

Message (Sheet 6) in the RPG Class 1 User ICD. 

 

Note 3. For products which are compressed, halfword 51 (P8) denotes the compression method:  

 

          halfword 51 contains 0 if no compression is applied  

          halfword 51 contains 1 if the data are compressed using bzip2 (refer to Appendix D for details)  

 

And halfwords 52 (P9) and 53 (P10) denote the size of the uncompressed product, in bytes, excluding 

the sizes of the Message Header block and Product Description blocks:  

 

          halfword 52 contains size of uncompressed product (MSW), in bytes  

          halfword 53 contains size of uncompressed product (LSW), in bytes  

 

If the product size less the product header and product description block is less than 1000 bytes, 

halfword 51 contains 0.  



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 81 of 202 

 

 

Product Symbology Block  

 

NOTE: WSR-88D products contain 4-byte, 2-byte, and 1-byte data fields. Since the ORPG is now 

supported on both big Endian and little Endian architectures, the data must be written into the product in 

a very specific manner. Properly accounting for the byte-swapping infrastructure and the alignment of 

data fields is described in CODE Guide Volume 3, Document 3, Section III - Writing Product Data 

Fields. 

 

The Product Symbology Block always contains the block ID of number 1 and is shown below. If it is 

available in a product, it will always follow the Product Description Block.  

 

Traditional Products  
 

In general, this block contains display data packets which make up the geographic display of the 

product. These packets may contain vectors, text and special character symbols, map data, radial data, 

raster data, precipitation data, vector arrow data, wind barb data, and special graphic symbols.  

 

The Symbology Block may, depending upon the product, have multiple "layers" of packets. This occurs 

in products that have both image type data, mixed with non-image type data. An example of this are the 

cross section products. The first layer is reflectivity or velocity data in raster packets; the second layer is 

the vector and text packets that create the grid lines and labels. The layers are started with the (-1) 

divider.  

 

Guidance for the use of data packets in within the Symbology Block and use of multiple layers within the 

Symbology Block is provided in Section II - Traditional Product Data Packets  of this document. 

 

Generic Products  
 

In general this block contains one data packet 28 in layer 1. Though not explicitly prohibited at this time, 

the product should contain no additional symbology block layers or a GAB or a TAB.  

 

Guidance for the use of data packet 28 within the Symbology Block is provided in Section III - Generic 

Product Components of this document. 

 

 

 

 

 

 

 

 

 

 



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 82 of 202 

The following representation of the Product Symbology Block is based upon Figure 3-6 (sheet 3) of the 

ICD for the RPG to Class 1 User.  

The Symbology Block Format  
 

      Contents  Halfword (2 bytes)  

 

 

 

Page 1 

 

 

 

 

 

 

 

 

 

 

Page N 

BLOCK DIVIDER (-1)  

BLOCK ID (1)  

LENGTH OF BLOCK (MSW)  

LENGTH OF BLOCK (LSW)  

NUMBER OF LAYERS  

LAYER DIVIDER (-1)  

LENGTH OF DATA LAYER (MSW)  

LENGTH OF DATA LAYER (LSW)  

DATA 

PACKETS  

.               . 

.               . 

.               . 

LAYER DIVIDER (-1)  

LENGTH OF DATA LAYER (MSW)  

LENGTH OF DATA LAYER (LSW)  

DATA 

PACKETS  

 

61  

62  

63  

64  

65  

   

   

   

   

  

  

   

   

   

   

   

 

 

 

Product Symbology Block Field Descriptions 

 

The field descriptions are documented in Figure 3-6 (sheet 8) of the ICD for the RPG to Class 1 User. 

Note that the type notations are based on the original FORTRAN documentation. INT*4 represents a 4 

byte (32 bit) integer and INT*2 represents a 2 byte (16 bit) integer.  

 

 

  

FIELDNAME  
  

TYPE  
  

UNITS  
  

RANGE  
PRECISION/ 

ACCURACY  
  

REMARKS  

Block Divider  INT*2  N/A  -1  N/A  
Integer value of -1 used to delineate 

the Product Description from the 

Product Symbology Block  

Block ID  INT*2  N/A  1  N/A  
Constant value of 1 which identifies 

this block  



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 83 of 202 

Length of Block  INT*4  Bytes  1 to 400000  1  
Length of block in bytes (includes 

preceding divider and block id)  

Number of Layers  INT*2  N/A  1 to 18  1  
Number of data layers contained in 

this block (see Note 2)  

 

Layer Divider  INT*2  N/A  -1  N/A  
Integer value of -1 used to delineate 

one data layer from another  

Length of Data Layer  INT*4  N/A  1 to 400000  1  
Length of data layer (in bytes) not 

including layer divider and length field  

Display Data Packets  N/A  N/A  N/A  N/A  See Figures 3-7 through 3-15c  

 

Note 2. With traditional products, the various layers are different types of data formats. An example 

would be the cross section products. The first layer is reflectivity or velocity data in raster packets; the 

second layer is the vector and text packets that create the grid lines and labels. The length of the layer 

does not include the divider or the length word. Generic products have 1 layer containing the generic 

product data packet. 

   



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 84 of 202 

 

 

Graphic Alphanumeric Block  

The Graphical Alphanumeric Block (GAB) always contains the block ID of number 2 and is shown 

below. When included in a product, it will always follow the Product Symbology Block and precede the 

Tabular Alphanumeric Block (if present). The purpose of this block is to provide data in a tabular format 

to supplement the graphic product contained in the Product Symbology Block. This data is displayed at 

the top of the graphic product on the PUP display. NEXRAD products having an associated GAB are 

listed at paragraph 3.2.1.3, Graphic Alphanumeric Block, in the ICD for the RPG to Class 1 User.  

 

The data portion of the GAB is a series of text and vector packets which format the data into 5 lines of 

text separated by grid lines.  

 

The Graphical Alphanumeric Block Format  
 

      Contents  
  

   

Page 1 

 

 

 

 

 

 

 

 

 

 

 

Page N 

BLOCK DIVIDER (-1)  

BLOCK ID (2)  

LENGTH OF BLOCK (MSW)  

LENGTH OF BLOCK (LSW)  

NUMBER OF PAGES  

PAGE NUMBER  

LENGTH OF PAGE  

TEXT PACKET 1  

.               . 

.               . 

TEXT PACKET N  

.               . 

.               . 

.               . 

PAGE NUMBER  

LENGTH OF PAGE  

TEXT PACKET 1  

.               . 

.               . 

TEXT PACKET N  

 

   

 

 

 



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 85 of 202 

Graphic Alphanumeric Block Field Descriptions 

 

The field descriptions are documented in Figure 3-6 (sheet 9) of the ICD for the RPG to Class 1 User. 

Note that the type notations are based on the original FORTRAN documentation. INT*4 represents a 4 

byte (32 bit) integer and INT*2 represents a 2 byte (16 bit) integer.  

 

NOTE: WSR-88D products contain 4-byte, 2-byte, and 1-byte data fields. Since the ORPG is now 

supported on both big Endian and little Endian architectures, the data must be written into the product in 

a very specific manner. Properly accounting for the byte-swapping infrastructure and the alignment of 

data fields is described in CODE Guide Volume 3, Document 3, Section III - Writing Product Data 

Fields. 

 



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 86 of 202 

 

 

Tabular Alphanumeric Block  

The Tabular Alphanumeric Block (TAB) always contains the block ID of number 3 and is shown below. 

When included in a product, it will always follow the Product Symbology Block and Graphic 

Alphanumeric Block (if present). The purpose of this block is to provide a "paired" alphanumeric 

product accompanying the graphic product contained in the Product Symbology Block. NEXRAD 

products having a paired TAB are listed at paragraph 3.2.1.4, Tabular Alphanumeric Block, in the ICD 

for the RPG to Class 1 User.  

 

The TAB includes a second Message Header Block (MHB) and Product Description Block (PDB) as 

shown in the figure below. The Message Code field in the MHB and the Product Code field in the PDB 

are changed to a unique value for this "paired" product. The data portion of the TAB is ASCII text 

formatted into pages of 17 lines and 80 characters.  

 

 

 

 

The Tabular Alphanumeric Block Format  
 

      Contents  
  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 1 

 

 

 

 

 

 

 

 

 

BLOCK DIVIDER (-1)  

BLOCK ID (3)  

LENGTH OF BLOCK (MSW)  

LENGTH OF BLOCK (LSW)  

Message Header Block  

Product Description Block  

BLOCK DIVIDER (-1)  

NUMBER OF PAGES  

NUMBER OF CHARACTERS  

  

CHARACTER DATA 

   

.               . 

NUMBER OF CHARACTERS  

  

CHARACTER DATA 

   

END OF PAGE FLAG (-1)  

.               . 

.               . 

   



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 87 of 202 

 

 

 

Page N 

NUMBER OF CHARACTERS  

  

CHARACTER DATA 

   

.               . 

NUMBER OF CHARACTERS  

  

CHARACTER DATA 

   

END OF PAGE FLAG (-1)  
 

 

 

Tabular Alphanumeric Block Field Descriptions 

 

The field descriptions are documented in Figure 3-6 (sheet 10) of the ICD for the RPG to Class 1 User. 

Note that the type notations are based on the original FORTRAN documentation. INT*4 represents a 4 

byte (32 bit) integer and INT*2 represents a 2 byte (16 bit) integer.  

 

 

NOTE: WSR-88D products contain 4-byte, 2-byte, and 1-byte data fields. Since the ORPG is now 

supported on both big Endian and little Endian architectures, the data must be written into the product in 

a very specific manner. Properly accounting for the byte-swapping infrastructure and the alignment of 

data fields is described in CODE Guide Volume 3, Document 3, Section III - Writing Product Data 

Fields. 

 



Vol 2 Doc 3 Section I - Product Block Structure                                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 88 of 202 

 

 

Data Packet Descriptions  

 

There are approximately 30 types of data packets used in WSR-88D products. These the structure of 

these packets is documented in Figures 3-7 through 3-15c of the ICD for the RPG to Class 1 User.  

 

Section II of this document introduces the traditional data packets and defines their use in a WSR-88D 

product. Section III of this document introduces the generic components that can be represented with 

data packet 28.  

 

 

 
 

 



Vol 2 Doc 3 Section II - Traditional Product Data Packets                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 89 of 202 

Vol 2. Document 3 - 

WSR-88D Final Product Format  

Section II   Traditional Product Data Packets  

 

Build 12: 

 For data packet 20, point feature data, added the symbol number, current use, and 

description of all symbols currently defined.  Noted that new symbols intended for 

operational products must be coordinated with the Radar Operations Center during 

the design review.  For CVG display, the development lead for CVG must be 

notified. See Part C. 

 

Part A. Introduction 

 
 

Currently, approximately 30 data packets are used in various ways to construct weather products. There 

are several packets which contain text information to be used in a very specific manner in different parts 

of the product. There are also several data packets for drawing vectors or lines on the graphic display, 

some for mono color lines and some variable color. Several packets are used to represent special 

symbols and some of these are nested within other packets. There is a packet used to represent radial 

data (polar coordinate) intended for display and another to represent raster data (rectangular coordinate) 

intended for display. There is a data packet used to represent 8-bit radial data that was not originally 

intended for display.  

 

One common thread in many of these traditional data packets is that the packet data includes display 

information to some extent. This display content ranges from a specific encoding of display labels, using 

coordinates that assume a specific display screen resolution, and in some cases contain pixel size / 

coordinate information used to draw the specific symbols and lines.  

 

Two documents are needed to understand the use of these data packets.  

1. The format and field definitions for the data packets are documented in Figures 3-7 through 3-

15c of the Interface Control Document (ICD) for the RPG to Class 1 User, Document number 

2620001. A recent version is provided in the 2620001u_rpg_class1.pdf file located in the -

-/pdf_doc/ directory on the CODE CD. 

2. The meaning of the data contained in the data packets and for some data packet the nature of the 

displayed symbol is contained in the WSR-88D Product Specification, Document number 

2620003: 2620003t_prod_spec.pdf (located in the --/pdf_doc/ directory on the CODE 

CD).  

General Guidance for Structure of Product Symbology Block  



Vol 2 Doc 3 Section II - Traditional Product Data Packets                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 90 of 202 

The following guidelines are not formal 'rules' contained in the ICDs listed in the previous paragraph. 

However they describe how traditional products typically use data packets within the symbology block.  

If followed, unexpected impacts on users of new products can be minimized. 

1. It is recommended that a symbology block not be empty. It should contain at least one data 

packet in the first layer. 

 

2. It is recommended that a layer in a symbology block not be empty.  A layer should contain at 

least one data packet. 

 

3. For the two dimensional data arrays (packets AF1F, BA07, and 16) intended for graphical 

display 

o The 2-D data array must be in layer 1 of the symbology block. 

o Only one 2-D array should be included in any product. There is one legacy product that 

has multiple 2-D arrays in an LFM grid: the Hourly Digital Precipitation Array (DPA). 

o Data packets for any additional data (whether text, vector graphics, or special symbols) 

should be in subsequent layers. 

4. Though not explicitly stated in the ICD for the RPG Class 1 User (mandatory requirements): 

o All 2-byte and 4-byte data fields must begin at an even numbered byte offset from the 

beginning of the product message. 

o All series of 1-byte data fields must begin at an even numbered byte offset from the 

beginning of the product message. This implies that 1-byte data fields must be used in 

pairs. 

o All data length fields used in data packets containing 1-byte data fields must account for 

an even number of 1-byte data fields.  These fields may represent integer data or 

character data. 

Many of the data packet listed here are used for specific purposes (some for only a 

single product). Data packet marked with  **  are considered more likely to be useful 

when creating new products.  

 

 

 

 



Vol 2 Doc 3 Section II - Traditional Product Data Packets                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 91 of 202 

 

Part B. Two-Dimensional Data Array Packets  
 

These data packets provide the colored images that can be used to represent basic radar values like 

reflectivity, radial velocity, and spectrum width or derived values like rain fall accumulation or cloud 

tops. Most of the product data arrays are geographic, that is representing two-dimensional ground 

position with respect to the radar location. A few are non-geographic, one example are the vertical cross 

section products.  

 

16-Level Radial / Raster Packets (for Display) 
 

A primary design factor for these data packets was size based upon the limiting factors existing in the 

late 1980's: network and modem bandwidth and computational resources (for example available 

storage). The data can have a maximum of 16 data levels and products with 16, 8, and 4 data levels are 

produced). A form of run-length encoding (RLE) is used to reduce the size of the product further. 

Products using these data packets were intended for display and one feature of the data packets is that 

the text threshold labels that are displayed next to each color in the legend are encoded in the product 

itself. Geographic products using these data packets are produced in several horizontal resolutions 

(250m, 500m, 1000m, and 2000m).  

1. Packet AF1F - Radial Data **  

Radial data packets are used in geographic products with the center (radial origin) being the 

location of the radar antenna. This data packet is often used in elevation type products. In this 

case the data are derived from a specific elevation cut of the radar scan. The products are not 

projected to the surface so the range information is the slant range of the conic section of the 

individual scan.  

2. Packet BA07/BA0F - Raster Data **  

Raster data packets are used in both geographic products (the center representing the radar 

location) and non-geographic products.  

 

When these packets are constructed, to maintain proper structure, there must be an even number of bytes 

representing the run-length encoded data.  The API helper functions will pad the data as required 

ensuring alignment. The packet header field representing the length of the data must include any padded 

data. 

 

 

8-bit Radial Data Arrays 
 

The 8-bit radial data array packet was created to provide a means of encoding higher resolution 

information that could be used for further computation by external systems. These products are often 

called 'digital' products because they were originally not intended for display. Up to 256 data levels can 

be represented. Today products containing this data packet are routinely displayed on AWIPS and other 

external systems. Geographic products using these data packets are produced in several horizontal 

resolutions (250m, 500m, 1000m, and 2000m).  



Vol 2 Doc 3 Section II - Traditional Product Data Packets                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 92 of 202 

1. Packet 16 - Digital Radial Data Array **  

Radial data array packets are used in geographic products with the center (radial origin) being 

the location of the radar antenna. This data packet is often used in elevation type products. In this 

case the data are derived from a specific elevation cut of the radar scan. The products are not 

projected to the surface so the range information is the slant range of the conic section of the 

individual scan.  

 

The real product data should be encoded into the 8-bit integer in a linear fashion described in 

Appendix B.  Unfortunately, existing products are not consistent in the manner real data values 

are encoded into the array of 8-bit integers.  The precise means of encoding this data in more 

recent products does not always follow the original method.  

 

If the range and precision of the product's data cannot be represented via a linear encoding 

described in Appendix B, the Generic Radial component (section III of this document) is an 

alternative. The radial component is being used in a new DPR product. 

 

BZIP2 compression can be used to reduce the product size.  

 

When this packet is constructed, to maintain proper structure, there must be an even number of bytes 

representing the radial data arrays.  The API helper functions will pad the data as required ensuring 

alignment. The packet header field representing the length of the data must include any padded data  

 

 

Special Purpose Data Arrays 
 

These data packets are very specific and are only used in the DPA (Digital Precipitation Array) product. 

The geographic data contained is based upon a particular type of polar limited fine mesh (LFM) 

projection which is unique to this product.  

1. Packet 17 - Digital Precipitation Data Array 

2. Packet 18 - Precipitation Rate Data Array  
 
When these packets are constructed, to maintain proper structure, there must be an even number 

of bytes representing the run-length encoded data.  The packet header field representing the 

length of the data must include any padded data.   

 



Vol 2 Doc 3 Section II - Traditional Product Data Packets                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 93 of 202 

 

Part C. Special Symbols  
 

These data packets provide the various symbols that can be used to represent meteorological features 

like mesocyclones, tornadoes, and hail. Most of the symbols are used in geographic products, that is 

their locations represent a two-dimensional ground position with respect to the radar location. Two 

symbols are non-geographic and are used in specific products.  

 

 

Geographic Overlay Symbols  
 

For the most part, these data packets have a very specific purpose and are only used in specific type of 

product. The exception is data packet 20 - Point Feature Data. This is not a Legacy data packet and is 

designed to be extensible. The products containing these packets are intended to be displayed on top of 

basic geographic data array products. Each symbol indicates the location of a particular meteorological 

feature. The data packet location coordinates are in units of 1/4 KM.  

1. Packet 3 / 11 - Mesocyclone / Correlated Shear   

Examples of use: M (Mesocyclone) & MD (Mesocyclone Detection)   

2. Packet 12 / 26 - TVS / ETVS   

Used in the TVS (Tornado Vortex Signature) product.   

3. Packet 13 / 14 -   

     [NO LONGER USED]  

4. Packet 15 Storm ID   

Examples of use: M (Mesocyclone), MRU (Mesocyclone Rapid Update), HI (Hail Index)   

5. Packet 19 - HDA Hail Data   

Used in the HI (Hail Index) product.   

6. Packet 23 / 24 - SCIT (Past / Forecast) Position   

Used in the STI (Storm Tracking Information) product and in the MD (Mesocyclone Detection) 

product. Within these packets, data packet 2 is used to representing the symbols and data packet 

6 is used for the connecting lines.   

a. Packet 2 - Symbol (No Value)  
Used in the STI (Storm Tracking Information) product and in the MD (Mesocyclone 

Detection) product. Nested inside of packets 23 & 24.    

 



Vol 2 Doc 3 Section II - Traditional Product Data Packets                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 94 of 202 

b. Packet 6 - Linked Vector (No Value)  
Used in the STI (Storm Tracking Information) product and in the MD (Mesocyclone 

Detection) product. Nested inside of packets 23 & 24.  

7. Packet 25 - STI Circle   

Used in the STI (Storm Tracking Information) product.   

8. Packet 20 - Point Feature Data **  

The purpose of this data packet was to create an extensible set of symbols in one packet. 

Currently there are 11 symbols defined.  

Symbol  Current Use Description 

1 MRU (retired) Segmented Circle, thick line, variable radius (attribute field) 

2 MRU (retired) Segmented Circle, thin line, variable radius (attribute field) 

3 MRU (retired) Solid Circle. thick line, variable radius (attribute field) 

4 MRU (retired) Solid Circle. thin line, variable radius (attribute field) 

5 TRU Triangle on Side, solid color,  

6 TRU Triangle on Side, line only,  

7 TRU Inverted Triangle, solid color,  

8 TRU Inverted Triangle, line only,  

9 MDA Spiked Solid Circle, thick line, variable radius (attribute field) 

10 MDA Solid Circle, thick line, variable radius (attribute field) 

11 MDA Solid Circle, thin line, variable radius (attribute field) 

Defining new symbols for a product intended for integration into the operational system is 

accomplished through design reviews with the Radar Operations Center.  For display via 

CODEview Graphics (CVG), contact the development lead for CVG.  

 

Non-Geographic Symbols  
 

These data packets are each currently only used in a specific product. The data packet location 

coordinates are in pixel screen coordinates. Though the Class 1 User ICD permits 1/4 KM location 

coordinates, these packets have never been used in geographic products.  

1. Packet 4 - Wind Barb   

Used in the VWP (VAD Wind Profile) product.   

2. Packet 5 - Vector Arrow   

Was used in the Combined Moment product (product discontinued).   

 

 

 



Vol 2 Doc 3 Section II - Traditional Product Data Packets                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 95 of 202 

 

Part D. Vector Packets  
 

Linked vector packets are intended to be used when a line is made up of multiple points. Unlinked 

vector packets are intended to be used for lines having two points, a beginning and an end. Vectors 

having no value are intended to be drawn with the standard foreground color (typically white). Vectors 

having uniform value have a value field that could be used to determine color for display. These packets 

have not always been used in this manner. There are examples where the display device displays no 

value vectors in more than one color. The data packet location coordinates are in units of 1/4 KM when 

used in geographic products or in pixel screen coordinates when used in non-geographic products.  

 

Used in GAB  
 

The GAB is a portion of a product that is constructed in a very specific manner. The grid lines in a GAB 

must be represented by data packet 10 with location in screen coordinates.  

1. Packet 10 - Unlinked Vector (Uniform Value)   

Examples of use: M (Mesocyclone), HI (Hail Index), TVS (Tornado Vortex Signature)   

 

 

General Purpose  
 

These data packets could be used in both geographic and non-geographic products. However, these 

packets are currently used in only certain situations. For example, data packet 6 is currently only used 

nested inside of packets 23 & 24 representing tracking information (geographic). Packet 7 is currently 

only used in cross section products (non-geographic). Packet 9 is currently only used in the VAD 

product (non-geographic).  

1. Packet 6 - Linked Vector (No Value)   

Used in the STI (Storm Tracking Information) product and in the MD (Mesocyclone Detection) 

product. Nested inside of packets 23 & 24.   

2. Packet 7 - Unlinked Vector (No Value)   

Used in Cross Section products.   

3. Packet 9 - Linked Vector (Uniform Value)   

Used in the VAD (Velocity Azimuth Display) product.   

4. Packet 10 - Unlinked Vector (Uniform Value)   

Used in the VWP (VAD Wind Profile) product.   

 

 



Vol 2 Doc 3 Section II - Traditional Product Data Packets                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 96 of 202 

Special Purpose Vector Packets 
 

The purpose of these data packets is to display data levels via geographic contour lines having different 

colors. Legacy products using the following data packets were removed from the ORPG in Build 4.  

However the future Melting Layer product may use these data packets.  It is recommended that the 

Generic Area Component be used instead of these data packets. 

 

These linked and unlinked vector data packets and their associated color level packet should only be 

used for the purpose of providing geographic contour lines representing 2 dimensional data level. The 

data packet location coordinates are in units of 1/4 KM. The general purpose vector packets or the 

Generic Area component should be used for all other vector or line drawing purposes. 

 

1. Packet 0802 - Contour Vector Color  

This packet is located just before a series of contour vector packets to determine an index into 

the color table.  

 

Used in the new melting layer (ML) product. 

2. Packet 0E03 - Linked Contour Vector    

Used in the new melting layer (ML) product. 

3. Packet 3501 - Unlinked Contour Vector   

 

 

 

 



Vol 2 Doc 3 Section II - Traditional Product Data Packets                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 97 of 202 

 

Part E. Text Packets  
 

Text packets having no value are intended to be drawn with the standard foreground color (typically 

white). Text packets having uniform value have a value field that could be used to determine color for 

display. These packets have not always been used in this manner. There are examples where the display 

device displays no value text in more than one color. The data packet location coordinates are in units of 

1/4 KM when used in geographic products or in pixel screen coordinates when used in non-geographic 

products.  

 
When these packets are constructed, to maintain proper structure, there must be an even number of bytes 

representing the character data. The data should be padded with a 'blank' character if necessary. The 

packet header field representing the length of the data must include any padded data. 

 

 

Used in GAB  
 

The GAB is a portion of a product that is constructed in a very specific manner. The text in a GAB must 

be represented by data packet 8 with location in screen coordinates.  

1. Packet 8 - Text (Uniform Value)   

Examples of use: M (Mesocyclone), HI (Hail Index), TVS (Tornado Vortex Signature)   

 

 

General Purpose 
 

The following text packets are general purpose and have been used in both geographic and non-

geographic products.   Each text data packet should represent only one line of text.  If positioning text in 

pixel screen coordinates, it is recommended to separate lines of text by at least 12 pixels (difference in J 

values). 

1. Packet 1 - Text (No Value) **  

Examples of use: Cross Section Products.   

 

NOTE: Several products (USP, DHR, and DPA) use packet 1 in a non-standard fashion and should 

not be considered examples of use.  

 The coordinates are in pixel screen coordinates rather than 1/4 KM for geographic 

products.  

 An un-documented aspect of the text data in these products is that the lines can be 

extremely long and can exceed limits of text display.  It is unclear how these are intended 

to be formatted.  CVG insert a line feed every 80 characters when displaying this packet. 

 



Vol 2 Doc 3 Section II - Traditional Product Data Packets                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 98 of 202 

2. Packet 8 - Text (Uniform Value) **  

Used in the MD (Mesocyclone Detection) (in lieu of packet 15), in VAD (Velocity Azimuth 

Display) and in VWP (VAD Wind Profile).   

 

 



Vol 2 Doc 3 Section II - Traditional Product Data Packets                                              

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 99 of 202 

 

Part F. Single Purpose Packets  
 

1. Packet 21 / 22 - Cell Trend Data / Cell Trend Volume Time   

Data packets only used in the SS (Storm Structure) product.  

2. Packet 27 - SuperOB   

A unique packet used in the SO (Superob) velocity product.  

 

 
 

 



Vol 2 Doc 3 Section III - Generic Product Components                                                  

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 100 of 202 

Vol 2. Document 3 - 

WSR-88D Final Product Format  

Section III  Generic Product Components  

 

The concept of a generic product is relatively new and ORPG infrastructure support is still evolving.  

 

Build 12: 

 For the area component, noted that even if the following are stated in the product 

specification ICD, the display attributes for lines, symbols and labels are 

completely determined by the display device.  In the future some effort should be 

made in defining a set of line and symbol attributes (line thickness, solid / dashed, 

etc. and label attributes.  Standard area component attribute names should also be 

defined that stipulate the display attributes. For CVG display, the development lead 

for CVG must be notified. Currently CVG only provides a capability to manually 

select display attributes from a defined short list. See Part D. 

 

 

 

Part A. Introduction 

 
 

The generic data packet (packet 28) is a collection of generic components each with a different purpose. 

There are several types of grid components that can be used to represent two dimensional binary data in 

rectangular or polar coordinates. The radial component can be used to contain radial data in various 

formats. The area component can be used to represent single geographic points, a geographic line, or an 

enclosed geographic area. The table component is used to represent text information in an organized 

tabular format. The text component is used to represent simple text.  

 

The contents of the generic data packet (packet 28) can be relatively self-descriptive if correctly used. 

The packet contains no display information in contrast to many of the traditional data packets. However, 

the flexibility of the generic components can also increase the effort required on the display system to 

decode and display the product. One example:  

 

The MRU product uses the traditional data packet 20 - Point Feature Data to represent different 

Mesocyclone features (current mesocyclone, extrapolated mesocyclone, current 3D correlated 

shear, etc.). Packet 20 uses a single field, "point feature type", to distinguish these features which 

are displayed in a distinctive manner with different symbols. The DMD product (replacing the 

MRU product) uses the generic area component to represent similar features. The nature of the 

component parameters in the design of the DMD requires a comparison of 4 parameters to make a 

distinction of which symbol to use with each point (feature).  



Vol 2 Doc 3 Section III - Generic Product Components                                                  

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 101 of 202 

Another difference between these two products is the method used to convey additional 

information about each feature. The MRU uses a table in a GAB and TAB. Using a GAB and TAB 

places limits on the formatting of this additional data but the user system requires no modification 

to display these portions of the product. The DMD uses component parameters to provide quite a 

bit of information about the features in the product, which can be displayed in any manner the 

designers of the display system choose. However, the system will require modification for each 

new product.  

 

A primary advantage of using generic components is the flexibility of the information that can be 

contained in a product without defining new structures or packet types.  Another advantage is separation 

of the look and feel of the display from the product content. One disadvantage is that in some cases the 

display system may require more modification for a new generic product.  

1. The format and field definitions for the generic data packet are documented in Figure 3-15c and 

Appendix E of the Interface Control Document (ICD) for the RPG to Class 1 User, Document 

number 2620001. A recent version is provided in the 2620001u_rpg_class1.pdf file located 

in the --/pdf_doc/ directory on the CODE CD.  

Unlike traditional data packets, the ICD only defines the structure of the header portion of 

data packet 28 when describing the message structure (in 16-bit integers). The structure of the 

serialized data portion of the packet is not described in the message structure by the ICD. The 

serialized data is created with C structures combined in a specified number and order. The C 

structures are defined in the file orpg_product.h. A standard serializing algorithm is used by 

the ORPG to create that portion of the product message. The user of the product must use a 

standard deserializing algorithm (available from the ROC) to read the data. The CODE 

display utilities CVT and CVG are examples of using the deserializing software. Appendix E. 

of the ICD contains a definition of generic product structure and the individual components 

that can be used to construct the serialized data portion of the data packet. The actual structure 

of the components can be better understood by review of the C structures defined in 

orpg_product.h. 

 

If there is a difference in the type and name of data fields, the C structure should be 

considered more up-to-date than the contents of Appendix E in the ICD.  

2. The meaning of the data contained in the data packets is contained in the WSR-88D Product 

Specification, Document number 2620003: 2620003t_prod_spec.pdf (located in the --

/pdf_doc/ directory on the CODE CD).  

 

General Guidance for Structure of Product Symbology Block 

The following guidelines are not formal 'rules' contained in the ICDs listed in the previous paragraph.  

However they describe how to use generic product components within the symbology block with the 

goal of minimizing unexpected impacts on users and simplifying the decoding logic required to interpret 

the products while not overly constraining the use of these components.   



Vol 2 Doc 3 Section III - Generic Product Components                                                  

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 102 of 202 

1. It is recommended that a symbology block not be empty.  

 

2. The symbology block must contain only one data packet 28 in the first layer. 

 

3. It is recommended that the other optional blocks, the Graphical Alphanumeric Block (GAB) and 

Tabular Alphanumeric Block (TAB) not be used. 

 

4. For the two dimensional data arrays (the generic radial component and the generic grid 

component) intended for graphical display 

o The 2-D data array component should be the first component in the product. 

o Only one 2-D array component should be included in any generic product. 

o Generic components for any additional data should follow. 

5. For the header portion of data packet 28, all 2-byte and 4-byte data fields must begin at an even 

numbered byte offset from the beginning of the product message. 

NOTE: The restrictions on alignment of 2-byte and 4-byte data fields and the requirement to use 1-byte 

data fields in pairs does NOT apply to the data portion of packet 28.  Very specific C structures are used 

to assemble this data.  Because the data is serialized by the API function provided, the structure of the 

data portion of the actual message cannot be diagramed graphically as the other portions of the final 

product. 

 

 



Vol 2 Doc 3 Section III - Generic Product Components                                                  

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 103 of 202 

 

Part B. The Generic Product  
 

The generic product is contained within data packet 28 which is the only packet in layer 1 of the 

symbology block.  

 

 Contents Halfword (2 bytes) 

 BLOCK DIVIDER (-1) 

BLOCK ID (1) 

LENGTH OF BLOCK (MSW) 

LENGTH OF BLOCK (LSW) 

NUMBER OF LAYERS 

LAYER DIVIDER (-1) 

LENGTH OF DATA LAYER (MSW) 

LENGTH OF DATA LAYER (LSW) 
 

  61 

  62 

  63 

  64 

  65 

  66 

  67 

  68 
 

  

Packet 28 
Header 
 

 

Packet 28 
Data  

 

Packet Code = 28 

NOT USED (for alignment) 

Number of Bytes (MSW) 

Number of Bytes (LSW) 

Serialized Generic Product Data 
RPGP_product_t  

 
 

 

 

The structure packet_28_t defined in packet_28.h can be used to access the header but the num_bytes 

field must be set with the RPGC_set_product_int function.  After writing the num_bytes field in Big 

Endian format, it must be read with RPGC_get_product_int.  

 

The serialized data must be deserialized using standard API functions and the resulting address cast to 

RPGP_product_t *. The top level structure of the generic product is represented by the C structure 

RPGP_product_t. This structure contains approximately 20 header fields (some of which are redundant 

with fields in the product description block), a pointer to product parameters, and a pointer to product 

components. The deserialized data does not need byte swapping.  

 

       

typedef struct {            /* product struct */ 

 

    char *name;             /* product name */ 

    char *description;      /* product description (may contain version  

                               info) */ 

    int product_id;         /* product id (code) */ 

    int type;               /* product type (RPGP_VOLUME... except  

                               RPGP_EXTERNAL) */ 

    unsigned int gen_time;  /* product generation time */ 

 

    char *radar_name;       /* radar name. NULL or empty string indicates 

                               the radar info is not applicable. The radar 

                               info is applicable for products based on  

                               single radar data. The following three  



Vol 2 Doc 3 Section III - Generic Product Components                                                  

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 104 of 202 

                               fields are used only if radar_name is  

                               specified. If not used, 0 is assigned. */ 

    float radar_lat;        /* radar latitude location (in degrees) */ 

    float radar_lon;        /* radar longitude location (in degrees) */ 

    float radar_height;     /* radar height location (in meters) */ 

    unsigned int volume_time; /* volume scan start time. This and the  

                               following 6 fields are used only for single 

                               radar based products. If not used, 0 is  

                               assigned. */ 

    unsigned int elevation_time; /* elevation scan start time. Used only   

                                    for elevation based products. */  

    float elevation_angle;  /* elevation angle in degrees. Used  

                               only for elevation based products. */ 

    int volume_number;      /* volume scan number */ 

    short operation_mode;   /* operation mode (RPGP_OP_MAINTENANCE...) */ 

    short vcp;              /* VCP number */ 

    short elevation_number; /* elevation number within volume scan. Used  

                               only for elevation based products. */ 

 

    short compress_type;   /* compression type (currently not used and  

                              must set to 0) */ 

    int size_decompressed; /* size after decompressing (currently not used 

                              and must set to 0) */ 

 

    int numof_prod_params;      /* number of specific product parameters */ 

    RPGP_parameter_t *prod_params; /* specific product  

                                                    parameter list */ 

 

    int numof_components;       /* number of components or events */ 

    void **components;   /* component or event list. See Note 0. */ 

 

} RPGP_product_t; 

 

Appendix E in the RPG Class 1 User Interface Control Document (ICD) contains a description of the 

contents of the fields in the generic product structure including the contents of the generic header fields 

and a detailed description of generic parameters.  

 

Algorithm API support 

 

The algorithm API contains helper functions to fill out the product header fields, fill the contents of the 

parameter structures, and to serialize / deserialize the product. No support is provided for construction of 

the components themselves.  RPGP_build_RPGP_product_t() should be used to insure that correct 

information is written to the header fields in RPGP_product_t. One item to note: the ICD states that the 

time fields in the generic product structure are all Unix time (seconds since 1/1/1970).   

 

The algorithm API contains some debug print functions that can be used to provide a text output of the 

contents of the product. The CODE utility CVT provides a more capable text output for analysis.  

 

Generic product and component parameters 

 

Each product parameter and component parameter is represented by the C structure RPGP_parameter_t. 

Generic parameters are used to provide additional data that further describes the product or components.  

For example, each of the product request parameters that generated a product could be included in a 

generic product component.   



Vol 2 Doc 3 Section III - Generic Product Components                                                  

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 105 of 202 

 

Part C. Two-Dimensional Data Array Components  
 

The following components correspond to the traditional radial, raster, and 8-bit radial data arrays. These 

components have not yet been used in a product. One significant difference is that numerical data can 

be represented by the correct type rather than having a special encoding technique used in the traditional 

data packet 16. Arrays of 8-bit/16-bit/32-bit integers (signed or unsigned), float (4-byte 

IEEE), and double (8-byte IEEE) can be used.  

 

Appendix E in the RPG Class 1 User Interface Control Document (ICD) contains a description of the 

generic components. 

 

Grid Components  

 

NOTE: The grid component is not completely defined at this time. Before using this component 

definitive component parameters must be predefined to represent the step size between the grid 

rows / columns, the location of the origin, and the coordinate orientation for certain grids.   

 

The grid component is represented by the C structure RPGP_grid_t. The grid component includes the 

structure RPGP_data_t which is used to contain the actual data arrays. Currently there are 4 types of grid 

components planned:  

 A non-geographical array.  

 A flat equally spaced grid.  

 An equally spaced latitude-longitude grid.  

 A rotated pole grid.  

NOTE: The grid component is not completely defined at this time. Before using this component 

definitive component parameters must be predefined to represent the step size between the grid 

rows / columns, the location of the origin, and the coordinate orientation for certain grids.   

 

Radial Component 
 

The radial component is represented by the C structure RPGP_radial_t. The radial component includes 

the structure RPGP_radial_data_t which is used to contain one radial of polar coordinate data. The 

structure RPGP_data_t contains the actual data arrays which can be one of the following data types: 8-

bit / 16-bit / 32-bit signed integers, 8-bit / 16-bit / 32-bit unsigned signed integers, and the real types 

float and double. 

 

The legacy data packets contain well-used packet type representing radial data in final products. The 

primary reason to use the radial component in a final product would be to take advantage of 

representation of real numerical data without having to use a unique or non-standard encoding scheme 

for representation via an 8-bit integer in data packet 16.  

 

Choice of data array types: 



Vol 2 Doc 3 Section III - Generic Product Components                                                  

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 106 of 202 

 

Unsigned Integer Types (unsigned char, unsigned short, unsigned int). The primary use of 

unsigned integers is to encode real product data into fewer bits than required by the IEEE floating point.  

As with the traditional packet 16, encoding should be in a linear fashion.  Choose the smallest type that 

can represent the range and precision of data in a linear fashion.  Since the float consumes the same 

space as the 32-bit int, the float should be considered if it reduces processing by the user. 

 

Signed Integer Types (char, short, int).  These types are convenient if the product data are integers.  

If the data are always positive, one of the unsigned types could be used. 

 

Real Data Types (float, double). These types may be convenient if they reduce processing.  The 

tradeoff is in increased product size.  With the nature of the radar data, the type double is probably 

never needed. 

 

The most important use of the radial component may be as a method of representing polar data arrays in 

intermediate products. This will be demonstrated in a future CODE sample algorithm.  

 

 

 



Vol 2 Doc 3 Section III - Generic Product Components                                                  

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 107 of 202 

 

Part D. Two-Dimensional Overlay Components  
 

Appendix E in the RPG Class 1 User Interface Control Document (ICD) contains a description of the 

generic components. 

 

Area Components  
 

The area component is represented by the C structure RPGP_area_t. The area component uses one of 

three structures to represent the location of the point(s) based upon the component type: 

RPGP_location_t (latitude/longitude), RPGP_xy_location_t (rectangular coordinates in KM), and 

RPGP_azran_location_t (azimuth in degrees and range in KM). The area component can be used to 

represent  

 A single geographical point  

 A geographical polyline  

 A closed geographical area  

Even though they may be defined in the product specification ICD, currently line attributes 

(thickness, solid or dashed) and symbols and labels used for points are completely determined by 

the display device.  In the future, it would be nice if a set of lines, symbols, and labels could be 

defined along with the definition of specific area component attributes to indicate what should be 

displayed. 

 

For CODEview Graphics (CVG), several line, symbol, and labels options can be manually chosen 

at display time.   
 

Example of use: DMD (Mesocyclone Detection Data Array Product)  

 

 

 



Vol 2 Doc 3 Section III - Generic Product Components                                                  

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 108 of 202 

 

Part E. Components Used for Text Content  
 

Appendix E in the RPG Class 1 User Interface Control Document (ICD) contains a description of the 

generic components. 

 

Text Component  
 

The text component is represented by the C structure RPGP_text_t. A standard character string is used 

to represent the text. Example of use: ASP (Archive III Status Product)  

 

 

Table Component  
 

The table component is represented by the C structure RPGP_table_t. The table component uses the 

structure RPGP_string_t to represent the row and column labels and the contents of each table cell.  

 

 

 



Vol 2 Doc 3 Section IV - Final Product Format                                                                

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 109 of 202 

Vol 2. Document 3 - 

WSR-88D Final Product Format  

Section IV  ORPG Application Dependent Parameters  

 

Introduction 
 

Application dependent parameters can be used to provide customizing parameters via the product 

request message that can be used to change the nature of the product for that specific request. They can 

also be used to provide additional fields of information in the formatted final product. Except for the 

requested elevation, only the final product can be customized by the 6 request parameters in the product 

request message.  These parameters are not passed on to tasks upstream producing intermediate 

products. 

 

Part A. explains the relationship between the product specific parameters contained in the request 

message and the product dependent parameters in the product. Part B. discusses some rules to maintain 

consistency in the use of parameters in the product request message, and Part C. provides some guidance 

for use of the parameters in the product description block portion of the final product message.  

 

 

 

Part A. Relationship between the Request Message and the Final 
Product  
 

New products (product code & buffer number greater than 130) no longer have a hard coded unique 

relationship between the product parameters in the request message and the product parameters in the 

product description block. Rather, the 6 parameters contained in the request message map directly to the 

first 6 product parameters in the product description block.   

 

Product Parameter 

Number  

Product Parameter 

Index  

Halfword in Product 

Request Message  

Halfword in Product 

Description Block  

1  0  20  27  

2  1  21  28  

3  2  22  30  

4  3  23  47  

5  4  24  48  

6  5  25  49  

7  6  ---  50  

8  7  ---  51  

9  8  ---  52  

10  9  ---  53  



Vol 2 Doc 3 Section IV - Final Product Format                                                                

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 110 of 202 

 

It should be pointed out that this relationship exists only when the use of any of the parameters in the 

request message for that product has been defined in the product_attr_table configuration file. Any 

of the first six parameters not defined for use in the request message can be used in the product 

description block for other purposes.  

 

 



Vol 2 Doc 3 Section IV - Final Product Format                                                                

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 111 of 202 

 

Part B. Product Request Message  
 

Product Dependent Parameters (PDP) in the Product Request Message  
 

Product dependent parameters for the request message are configured via the params attribute in the 

product_attr_table configuration file. For elevation products, these parameters determine which 

elevation is being requested. In addition, some products can be customized via passing additional 

parameters in the product request message.  

 

In the following example, the first two parameters (like most parameters) have a straight forward 

interpretation. params 0 (product dependent parameter 1) represents Azimuth from 0 to 359.9 degrees 

in tenths of a degree (0 degrees is the default). params 1 (product dependent parameter 2) represents 

Range from 0 to 124.0 NM in tenths of a NM (0 NM is the default). The third parameter representing 

elevation (the most common parameter in the system) is a special case.  

 

params 

        0     0   3599      0      10   "Azimuth"    "Degrees" 

        1     0   1240      0      10   "Range"      "Nmiles" 

        2   -20   3599      0      10   "Elevation"  "Degrees" 

      index  min   max   default  scale   name        units 

 

The elevation is scaled in units*10 and can range from -2.0 units (-20) to plus 359.9 units (3599). The 

default value is 0 units. The actual interpretation is not that simple. Negative numbers actually represent 

slices rather than angles and the scale is not applied. This means -4 (unscaled) represents the first 4 

elevations in a volume and -20 (unscaled) represents the first 20 elevations in a volume. Scaling is 

applied to positive numbers. Small positive numbers represent positive elevation angles (34 represents + 

3.4 degrees) and a very large positive number represents negative elevations (3595 represents - 0.5 

degrees). Note: It is not clear where the transition between representing positive angles and negative 

angles occurs. According to the ICD for the RPG to Class 1 User, the maximum negative angle is -1.0 

degrees and the maximum positive angle is 45.0 degrees. Currently the radar does not scan at negative 

elevation angles.  

   

 

Rules for Using PDP in the Product Request Message  
 

These rules are consistent with existing products. Following each rule is an example of the parameters as 

defined in the product_attr_table configuration file.   

 

Notes that apply to the following rules:  

Note 1:   Represented by a scaled integer.   

Note 2:   The value -1 is a flag having special meaning. See Table IIa, Product Dependent 

Halfword Definitions for Product Request Message, in the ICD for the RPG to Class 

1 User.   

1. All elevation based products will use the third parameter (param index 2) for the elevation. 



Vol 2 Doc 3 Section IV - Final Product Format                                                                

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 112 of 202 

Parameter  

        Use / Description                      Units               Range        

   Accuracy /    

   Precision  Number    Index    

3  2  Elevation Angle  Degrees  -1.0 to 45.0  0.1 Note 1  

     Example of definition in product_attr_table configuration file:  

params 

                   2 -20 3599 0 10 "Elevation" "Degrees" 

2. Any product that can be constructed at different levels (altitudes) rather than different elevations 

(conic sections) should use the third parameter (param index 2) for the level. 

Parameter  

        Use / Description                      Units               Range        

   Accuracy /    

   Precision  Number    Index    

3  2  Altitude  K Feet  0 to 70  1  

     Example of definition in product_attr_table configuration file:  

params 

                   2 0 70 2 1 "Altitude" "Kfeet" 

3. Contour Intervals will be specified in the sixth parameter (param index 5). 

Parameter  

        Use / Description                      Units               Range        

   Accuracy /    

   Precision  Number    Index    

6  5  Contour Interval  Feet  
2000 to 

30,000  
1000  

All contour products were retired. However, a future product will use contours. 

 

4. Cross section products will be specified as follows 

Parameter  

        Use / Description                      Units               Range        

   Accuracy /    

   Precision  Number    Index    

1  0  Azimuth of Point 1  Degrees  0 to 359.9  0.1 Note 1  

2  1  Range of Point 1  Nautical miles  0 to 124.0  0.1 Note 1  

3  2  Azimuth of Point 2  Degrees  0 to 359.9  0.1 Note 1  

4  3  Range of Point 2  Nautical miles  0 to 124.0  0.1 Note 1  

5  4  PARAM_UNUSED           

6  5  PARAM_UNUSED           



Vol 2 Doc 3 Section IV - Final Product Format                                                                

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 113 of 202 

     Example of definition in product_attr_table configuration file:  

params 

                   0 0 3599 0 10 "Azimuth Point 1" "Degrees" 

                   1 0 1240  0 10 "Range Point 1"   "Nmiles" 

                   2 0 3599 900 10 "Azimuth Point 2" "Degrees" 

                   3 0 1240 1240 10 "Range Point 2"   "Nmiles" 

5. Window Type Products will be specified as follows 

Parameter  

        Use / Description                      Units               Range        

   Accuracy /    

   Precision  Number    Index    

1  0  Azimuth of Window Center  Degrees  0 to 359.9  0.1 Note 1  

2  1  Range of Window Center  Nautical miles  0 to 124.0  0.1 Note 1  

3  2  
Elevation Angle (if elevation 

based product)  
Degrees  -1.0 to 45.0  0.1 Note 1  

4  3  PARAM_UNUSED           

5  4  PARAM_UNUSED           

6  5  PARAM_UNUSED           

     Example of definition in product_attr_table configuration file:  

params 

                   0   0 3599 0 10 "Azimuth" "Deg" 

                   1   0 1240 0 10 "Range" "nm" 

                   2 -20  3599 0 10 "Elevation" "Degrees" 

6. Products requiring a Speed and Direction Input (i.e., Storm Products) 

Parameter  

        Use / Description                      Units               Range        

   Accuracy /    

   Precision  Number    Index    

1  0  Azimuth (If used)  Degrees  0 to 359.9  0.1 Note 1  

2  1  Range (If Used)  Nautical miles  0 to 124.0  0.1 Note 1  

3  2  
Elevation Angle (if elevation 

based product)  
Degrees  -1.0 to 45.0  0.1 Note 1  

4  3  
Artifact Speed (e.g., storm 

speed)  
Knots  0 to 99.9  

0.1 Note 1 & 

2  

5  4  
Artifact Direction (e.g., storm 

direction)  
Degrees  0 to 359.9  0.1 Note 1  

6  5  PARAM_UNUSED           

     Example of definition in product_attr_table configuration file:  



Vol 2 Doc 3 Section IV - Final Product Format                                                                

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 114 of 202 

params 

                   0   0 3599 0 10 "Azimuth"         "Degrees" 

                   1   0 1240 0 10 "Range"           "Nmiles" 

                   2 -20  3599 0 10 "Elevation"       "Degrees" 

                   3 -10  999 -10 10 "Storm Speed"     "Knots" 

                   4 -10 3599 -10 10 "Storm Direction" "Degrees" 

7. Products specified by a time and duration 

Parameter  

        Use / Description                      Units               Range        

   Accuracy /    

   Precision  Number    Index    

1  0  End Hour  Hours  -1.0 to 23  1 Note 2  

2  1  Time Span  Nautical miles  1 to 24  1  

3  2  
Elevation Angle (if elevation 

based product)  
Degrees  -1.0 to 45.0  0.1 Note 1  

4  3  PARAM_UNUSED           

5  4  PARAM_UNUSED           

6  5  PARAM_UNUSED           

     Example of definition in product_attr_table configuration file:  

params 

                   0 -1 23 12 1 "End Hour" "Hours" 

                   1 1  24 24 1 "Time Duration" "Hours" 

 

 

 



Vol 2 Doc 3 Section IV - Final Product Format                                                                

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 115 of 202 

 

Part C. ICD Final Product Message  
 

 

1. Product Dependent Parameters (PDP) in the Product Description Block  
 

The product parameters in the product description block portion of the final product serve two purposes. 

First, they document the parameters contained in the request message. In addition, they can be used to 

return additional information.  

 

Rules for Using PDP in the Final Product Message  
 

Because of the new relationship between the 6 product parameters in the request message and the 10 

product parameters in the product description block, the legacy products (product code & buffer number 

less than 131) cannot be used to infer rules for new products.    

 

For new products (pcode / buffer numbers 131-1999)  

1. Parameters 1 - 6 must correspond to parameters defined for the product request message.  

2. Any parameter 1 - 6 that is not defined for use in the product request message can be used for 

another purpose.  

3. Parameters 7 - 10 currently have no restrictions except for product compression.  

4. Product Compression  

o Parameter 8 (halfword 51) indicates the compression method (0 - none, 1 - bzip2 

compression, 2 - zlib compression). Currently only bzip2 compression is used for final 

products.  

o Parameters 9 and 10 (halfwords 52 and 53) contain the uncompressed size of that portion 

of the product following the product description block (PDB). If the portion of the 

product after the PDB is less than 1000 bytes, then this parameter is 0.  

Additional rules remain to be determined. Table V in the ICD for the RPG to Class 1 User documents 

the use of these parameters in legacy products.  

 

 

 

2. Threshold Levels in the Product Description Block  
 

The 16 data level threshold values in the product description block (halfwords 31 - 46) are used to 

provide the threshold values for the PUP displayable run length encoded products. The legacy 

documentation refers to this as defining the "color tables".    

 

For 256 level products including the digital data array packet products, these halfwords have been used 

for other purposes.  

 

 

Rules for Using Threshold Levels in the Final Product Message  
 



Vol 2 Doc 3 Section IV - Final Product Format                                                                

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 116 of 202 

 

Run length encoded products (maximum of 16 levels)  
 

For run length encoded products (either radial or raster) that are PUP displayable, each halfword 

represents an encoding of the meaning assigned to this data level. This includes the following:  

 The actual numerical value assigned to this data level.  

 Above or below threshold.  

 Range Folded  

 No Data  

 Blank  

See Note 1 following figure 3-6 (sheet 8) in the ICD for the RPG to Class 1 User for an explanation of 

the encoding technique.  This note is also in Appendix C. of this Volume. 

 

 
Digital products (encoding real data into unsigned integer arrays)  
 

Non run length encoded products (265 level products using packet code 16 or the unsigned 8-bit and 16-

bit arrays in the generic radial component) do not explicitly describe threshold levels directly. Rather, 

these halfwords partially describe how the real data is encoded into a scaled byte.  The following 

paragraphs provided an overview of how the threshold fields in the product description block describe 

the encoded data.  A detailed description of use of threshold fields and the encoding and decoding of this 

data is provided in Appendix B of this Volume. 

 

Threshold Level Fields - The Original Parameter Method 

 

The existing use of the available data levels 0 - 255 falls into a pattern but a complete set of rules cannot 

be inferred from this pattern. Often the first two data levels (0 and 1) are flags representing "below 

threshold" and "missing" or "below threshold" and "range folded" respectively. Data levels 2 - 255 are 

typically used to encode numeric values.  

 

The Legacy digital products (and many products added since) had a specific, though incomplete, method 

of providing information in the Product Description Block to aid in decoding integer values in data 

packet 16.  

 

Halfword  Field Use 
HW 31 Threshold 1 contains the minimum value (encoded) 

HW 32 Threshold 2 contains the increment (encoded) 

HW 33 Threshold 3 contains the number of data levels 

 

 

Threshold Level Fields - The scale-offset Parameter Method (Recommended) 

 
The new scale-offset formula can be used to encode and decode any product having a linear 

increment between encoded data values.  The following threshold fields are being used by future Dual 

Polarization products to describe the scale-offset coding. 

 

 



Vol 2 Doc 3 Section IV - Final Product Format                                                                

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 117 of 202 

Halfword  Field Use 
HW 31 Threshold 1 the SCALE in IEEE floating point format 

HW 32 Threshold 2 

HW 33 Threshold 3 the OFFSET in IEEE floating point format 

HW 34 Threshold 4 

   

HW 36 Threshold 6 the highest data level having meaning,  including flag values 

HW 37 Threshold 7 the number of leading flag values (can be 0) 

HW 38 Threshold 8 the number of trailing flag values (can be 0) 

 

 

 



Vol 2 Document 4 Additional Information & Guidance                                                  

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 118 of 202 

 

Volume 2.  ORPG Application Software 

Development Guide  
 

Document 4.  ORPG Internal Data for Algorithm 

Developers  

This document contains helpful technical information concerning ORPG internals and also provides 

guidance in certain areas. The information presented here is independent of writing algorithm source 

code but does contain some references to the Application Programming Interface (API). CODE Guide 

Volume 3 - WSR-88D Algorithm Programming Guide contains the tutorial, reference, and sample 

algorithms for the WSR-88D Algorithm API and guidance for the structure of algorithms.  

 

Section  I   Base Data Format  
 

A reference to the structure of the base data radial message. This message is the format of the WSR-88D 

radar data provided to the algorithms which differs from the message passed from the RDA to the 

ORPG. The structure of the base data elevation message is also described.  

 

Section II   Algorithm Adaptation Data - Configuration & Use  
 

The WSR-88D uses adaptation data to configure many aspects of the radar system. A portion of this 

configuration data is used to alter or customize the contents of WSR-88D products. This section contains 

an overview of algorithm specific adaptation data and procedures for proper configuration.  

 

Section III  Other Data Inputs  
 

In addition to base data from the radar and algorithm specific adaptation data, algorithms can use 

intermediate product data produced by other algorithms, external data obtained from other systems, and 

miscellaneous configuration data.  



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 119 of 202 

Vol 2. Document 4 - 

Additional Information & Guidance for WSR-88D Algorithm 

Developers  

Section  I   Base Data Format  

BUILD 12 CHANGES:  

 

 Modified the description of determining the radial size (number of bins) for clarity and 

safety. See Part F. 

 Corrected the description of the recombination the ORPG accomplishes for the 

original data registrations.  See Parts A, D, and F. 

 The recombined rawdata types have been removed, the table in Part D was updated. 

 Removed all references to the actual size of the base data header.  The size of this 

structure is subject to change and the BASEDATA_HD_SIZE is now defined as 

(sizeof(Base_data_header) / sizeof(short)). 

 RECOMBINED_REFL_RAWDATA, RECOMBINED_COMB_RAWDATA, and 

RECOMBINED_RAWDATA have been removed in Build 12 and should not be used.  
 
BUILD 11 CHANGES: 
 

 Reorganized Section I to place the description of the VCPs first, before describing 

internal radial and elevation messages. The details of volume and data characteristics 

remain at the end of the section. 

 Clarified the major differences in base data when ingesting historical base data before 

the ORDA was fielded. 

 Updated description of RDA volume scanning strategies to include the latest Build 12 

VCP definitions.  This includes 250 m reflectivity at all elevations, the extended 300 

km Doppler range at the lower elevation (Contiguous Doppler and Batch), and the 

Dual Pol moments in the first scan of each elevation through all elevations. 

 Expanded the description of data characteristics to include the Build 12 Dual Pol data 

fields. Emphasized that the precision of some of the processed / derived Dual Pol data 

fields significantly exceed the specification of the preprocessor algorithm and the 

actual accuracy of the data. 

 Clarified that Build 11 support for Dual Pol data is preliminary and only for 

development purposes.  

 

 

NOTE:  Preliminary support for Dual Pol data was provided in Build 12 in order to support 

implementation.  Actual Dual Polarization implementation is provided in Build 12.1 and Dual 

Pol data is available in data produced by a Build 12 RDA. 

Some details concerning Dual Pol data as described in this document are subject to change.  

 

 

 
 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 120 of 202 

 

Part A. Volume Scanning Strategies  
 

The volumetric structure of the data consists of multiple elevations of radar data with each elevation 

consisting of multiple base data radial messages. Each elevation is actually a conic section with data 

sampled at a particular elevation angle. The data are sampled using one of several predefined scanning 

strategies, called volume coverage patterns (VCP).  

 

A detailed description of WSR-88D VCPs can be found in the Federal Meteorological Handbook No. 

11, Part C, Chapter 5 (FMH 11, Part C).  

 

Originally only 4 WSR-88D VCP's were defined. Two of the original VCPs were optimized for severe 

weather conditions (precipitation mode) and two were optimized for clear air conditions (clear air 

mode). The following VCPs are currently defined.  

 

The WSR-88D volume coverage patterns can be divided into 4 groups.  

 

Shallow Precipitation Group  VCP 21 / 221  

Deep Convection Group  VCP 11 / 211, VCP 12 / 212  

Multi-PRF Dealiasing Algorithm   VCP 121  

Clear Air Group  VCP 31, VCP 32  

 

Shallow Precipitation Group VCPs  

Scanning 

Strategy  

ORPG 

Weather Mode  

Number of 

Elevations  
Max Elevation Angle  Volume Time  

VCP 21 

(original)  

Precipitation  9  19.5 degrees  6 minutes  

Provides better velocity and spectrum width estimates beyond 60 NM than VCP 11. 

This is typically the default precipitation VCP because of it's long range capability.  

VCP 221 

(Build 9)  

Precipitation  9  19.5 degrees  6 minutes  

The same as VCP 21 but using the new SZ-2 algorithm in the RDA for range 

unfolding with the two lowest elevations (which are split cuts).  

 

Deep Convection Group VCPs  

Scanning 

Strategy  

ORPG 

Weather Mode  

Number of 

Elevations  
Max Elevation Angle  Volume Time  

VCP 11 

(original)  

Precipitation  14  19.5 degrees  5 minutes  

Provides better vertical sampling of weather near the antenna than VCP 21. This 

scanning strategy is usually preferred when severe weather of interest is within 60 

NM of the antenna.   

VCP 211 

(Build 9)  

Precipitation  14  19.5 degrees  5 minutes  

The same as VCP 11 but using the new SZ-2 algorithm in the RDA for range 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 121 of 202 

unfolding with the two lowest elevations (which are split cuts).  

VCP 12 

(Build 5)  

Precipitation  14  19.5 degrees  4.2 minutes  

Similar to VCP 11 (same number of elevations) but the elevation angles have been 

modified to provide a denser vertical sampling and the volume time reduced for 

quicker updates. Intended for rapidly evolving storms.  

VCP 212 

(Build 9)  

Precipitation  14  19.5 degrees  4.5 minutes  

The same as VCP 12 but using the new SZ-2 algorithm in the RDA for range 

unfolding with the three lowest elevations (which are split cuts). The volume time is 

a little longer than VCP 12.  

 

Multi-PRF Dealiasing Algorithm VCP  

Scanning 

Strategy  

ORPG 

Weather Mode  

Number of 

Elevations  
Max Elevation Angle  Volume Time  

VCP 121 

(Build 5)  

Precipitation  9  19.5 degrees  5 minutes  

This VCP has the same elevation angles as VCP 21 but performs 3 successive 

Doppler sweeps at lower angles (rather than the 1 Doppler sweep of the original 

VCP 'split cut'). The three Doppler sweeps are used for the multiple PRF dealiasing 

algorithm which provides better mitigation of range folding. The 3 Doppler cuts are 

then combined for that elevation by the ORPG. Intended for slower changing 

widespread precipitation and also useful in high wind conditions.  

 

Clear Air Group VCPs  

Scanning 

Strategy  

ORPG 

Weather Mode  

Number of 

Elevations  
Max Elevation Angle  Volume Time  

VCP 31 

(original)  

Clear Air  5  4.5 degrees  10 minutes  

Radar in long pulse. Permits detection of lower reflectivity returns at a longer range 

than VCP 32.   

VCP 32 

(original)  

Clear Air  5  4.5 degrees  10 minutes  

Radar in short pulse. Provides a larger unambiguous velocity.   

 

A more detailed description of the VCPs is provided in a table in the next section titles Additional 

Information on Volume Coverage Patterns. 

 

 
 

Additional Information on Volume Coverage Patterns (VCP)  
 

Detailed knowledge of how the radar samples the atmosphere is not required for basic algorithm 

development. It is often useful however to know the number of elevations in a VCP and the angle for 

each. The rest of this section contains additional information if interested. If not, skip ahead to ORPG 

Internal Basedata.  

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 122 of 202 

The factors that drive the design of the scanning strategy include the tradeoff between unambiguous 

range and unambiguous velocity inherent in Doppler radar, the temporal and spatial scales of the 

meteorological conditions of interest, the desired precision and accuracy of the data obtained, and the 

characteristics of the specific radar. At elevation angles below approximately 6 degrees, the data are 

sampled with two (or more) different PRFs in order to assign the Doppler data to the correct surveillance 

echo (range unfolding). Two methods are used to accomplish this multiple sampling. Below 

approximately 2.5 degrees, this is accomplished by scanning each elevation more than once (see "split 

cuts" below) in order to meet accuracy requirements and obtain reflectivity data to 460 km. Generally, 

from about 2.5 degrees through 6 degrees this is accomplished in a "batch" mode -- the radar rapidly 

switching between a lower PRF (surveillance) and a higher PRF (Doppler). Above 6 degrees range 

unfolding is not required since there are generally no significant weather returns at higher altitudes. This 

means that no echoes occur at longer slant ranges at higher elevation angles, eliminating the ambiguity. 

Additional information can be obtained from the Federal Meteorological Handbook No. 11, Part B, 

Doppler Radar Theory and Meteorology (FMH 11, Part B).  

 

The manner in which the data are sampled by the radar is related to but differs from the manner in which 

the data are presented to the algorithms. Stated in another way, the content of the data messages sent to 

the ORPG from the radar (from the RDA) is not the same as the base data radial message read by an 

algorithm. Other than having different structures and contents in the header portion of the message, the 

data content differs in several significant ways.  

1. Data from the RDA "split cuts" have been combined.  

2. With the Legacy RDA: Any data sample bins that are "behind" the radar are stripped out of the 

RDA radial message. For the original radar, typically the first two Doppler bins (both velocity 

and spectrum width) were discarded. The third RDA Doppler bin became the first RPG Doppler 

bin.  

3. The velocity information provided to the algorithms has been dealiased by the ORPG.  

4. Data sampled at the new higher resolution (0.5 deg azimuth and 250 meter reflectivity data bins) 

may be recombined into the original resolution depending upon the type of internal basedata 

being read.  Only the super resolution types (SR_BASEDATA, etc.) and the rawdata types 

(RAWDATA, etc.) described in Part D have no recombination applied.  The increased Doppler range 

of 300 km at the lower elevation angles is provided to all registration types. 

5. The dual polarization fields are pre-processed. 

 
Split Cuts  
 

For all VCPs except VCP 121, the lowest 2 or 3 elevations are scanned twice. The first scan is at a lower 

PRF and the base data messages transmitted to the ORPG include surveillance data bins (reflectivity 

data). The second scan at that elevation uses a higher PRF and the data messages transmitted include 

Doppler data bins (radial velocity and spectrum width data). The RPG inserts reflectivity data from the 

closest radial (in azimuth) in the first surveillance scan into each radial from the subsequent Doppler 

scan. Both the surveillance scan and the subsequent Doppler scan of a split cut are present in the rawdata 

and basedata linear buffers in the RPG. At higher elevations the data are sampled in a single scan.  

 

For VCP 121, the lowest 2 elevations are scanned four times, the 3rd and 4th elevations are scanned 

three times, and the 6th is scanned twice. The first scan is at a lower PRF and the base data messages 

transmitted to the ORPG include surveillance data bins (reflectivity data). The subsequent Doppler scans 

are at varied PRFs and used by the new multi-pulse repetition frequency dealiasing algorithm (MPDA) 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 123 of 202 

which help mitigate range folding. All of the subsequent Doppler scans are present in the rawdata linear 

buffer. The first subsequent Doppler scan includes reflectivity data that has been inserted from the 

closest surveillance radial from the first surveillance scan. After additional processing (velocity 

dealiasing) both the surveillance scan and only one Doppler scan from the split cut (includes the inserted 

reflectivity data) are stored in the basedata linear buffer.  

 

The following table provides a more detailed example of VCP definition (the Build 12 definition) which 

includes the waveform type and the contents. The details are always subject to change so algorithms 

must always accomplish proper testing of contents when reading the ORPG internal basedata described 

below. 

 

Example VCP Definition (Build 12)  

 
  

 The 0.5 degree azimuth sampling is only provided in the lower elevations (split cuts).   

 The 250 meter surveillance resolution is provided at all elevations.   

 The extended 300 km Doppler range is provided at lower elevations (Contiguous Doppler and 

Batch).   

 Beginning with Build 12, the first scan of each elevation will contain the Dual Polarization data: 

ZDR, PHI, and RHO.  Early test Dual Pol basedata contains the Dual Polarization data on both 

cuts of a split cut. 

  

 
 

ORPG Internal Basedata  
 

Other than having different structures and contents in the header portion of the message, the internal 

basedata content differs in several significant ways from the external basedata received from the RDA.  

1. Data from the RDA "split cuts" have been combined.  

2. With the Legacy RDA: Any data sample bins that are "behind" the radar are stripped out of the 

RDA radial message. For the original radar, typically the first two Doppler bins (both velocity 

Cut Elev. WF Elev. WF Elev. WF Elev. WF Elev. WF Elev. WF

# (deg) D V Z A Type (deg) D V Z A Type (deg) D V Z A Type (deg) D V Z A Type (deg) D V Z A Type (deg) D V Z A Type

1 0.5 CS1 0.5 CS1 0.5 CS1 0.5 CS1 0.5 CS1 0.5 CS1

2 0.5 CD2 0.5 CD2 0.5 CD2 0.5 CD2 0.5 CD2 0.5 CD2

3 0.5 CD2 0.9 CS1 1.45 CS1 1.45 CS1 1.5 CS1 1.5 CS1

4 0.5 CD2 0.9 CD2 1.45 CD2 1.45 CD2 1.5 CD2 1.5 CD2

5 1.45 CS1 1.3 CS1 2.4 B4 2.4 B4 2.5 B4 2.5 CS1

6 1.45 CD2 1.3 CD2 3.35 B4 3.35 B4 3.5 B4 2.5 CD2

7 1.45 CD2 1.8 B4 4.3 B4 4.3 B4 4.5 B4 3.5 CD3

8 1.45 CD2 2.4 B4 5.25 B4 6 B4 4.5 CD3

9 2.4 B4 3.1 B4 6.2 B4 9.9 CD3

10 2.4 CD3 4 B4 7.5 CD3 14.6 CD3

11 2.4 CD3 5.1 B4 8.7 CD3 19.5 CD3

12 3.35 B4 6.4 B4 10 CD3

13 3.35 CD3 8 CD3 12 CD3

14 3.35 CD3 10 CD3 14 CD3 A

15 4.3 B4 12.5 CD3 16.7 CD3 Z

16 4.3 CD3 15.6 CD3 19.5 CD3 V

17 6 B4 19.5 CD3 D

18 9.9 CD3

19 14.6 CD3

20 19.5 CD3

Bit 2

VCP Message 5 & 7: hw E3

300km Doppler Range

11, 21112, 212 21, 221

1/2 deg Azm Radials

 Content

31

250m Refl Bins

Bit 3

Bit 0

Bit 1

 Content  Content

Dual-Pol Data

32121
 Content Content  Content



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 124 of 202 

and spectrum width) were discarded. The third RDA Doppler bin became the first RPG Doppler 

bin.  

3. The velocity information provided to the algorithms has been dealiased by the ORPG.  

4. Data sampled at the new higher resolution (0.5 deg azimuth and the higher resolution 250 

meter reflectivity data bins may be recombined into the original resolution depending upon 

the type of internal basedata being read.  The new extended Doppler range of 300 km is not 

recombined.  Only the super resolution types (SR_BASEDATA, etc.) and the rawdata types 

(RAWDATA, etc.) described in Part D have no recombination applied. 

5. The dual polarization fields are pre-processed. 

 

The following discussion has been simplified by referencing only the original base data types. 

The Super Resolution and Dual Pol types are not included. Whenever REFLDATA is used, 

SR_REFLDATA, and DUALPOL_REFLDATA also apply. Whenever COMBBASE is used, 

SR_COMBBASE, and DUALPOL_COMBBASE apply. Whenever BASEDATA is used, SR_BASEDATA, 

and DUALPOL_BASEDATA apply.   

 

 
Combining Split Cuts 
 

The ORPG transforms the RDA base data messages into the ORPG base data messages described in this 

document. Algorithms interested only in reflectivity data register for REFLDATA(79) input and read 

ORPG data messages created directly from the first scan of a split cut. Algorithms interested in velocity 

/ spectrum width data (and reflectivity data) register for COMBBASE(96) input and read ORPG data 

messages derived from the subsequent Doppler scans of a split cut. The ORPG data messages created 

from single scan elevation samples are read by all algorithms inputting base data.  

 

Data messages read when registered for REFLDATA(79) and COMBBASE(96) contain a single radial of 

base data. A message containing a collection of radials forming a complete elevation scan can be 

obtained by registering for REFLDATA_ELEV(302) and COMBBASE_ELEV(303). These elevation messages 

are used by very few algorithms at this time.  

 

The ORPG base data messages derived from the subsequent Doppler scans of a split cut also contain 

reflectivity data that has been inserted from first scan of that cut. This process involves selection of the 

first scan reflectivity radial message with an azimuth closest to the Doppler scan azimuth. Thus, the 

reflectivity is "velocity mapped"; it no longer includes the original azimuth information. As a result, 

algorithms that are registered for COMBBASE(96) or COMBBASE_ELEV(303) input can process reflectivity 

data in addition to velocity and spectrum width. With data obtained from a radar before the Build 9 

ORDA, the reflectivity data for elevations derived from a split cut (inserted reflectivity data) will have a 

minor azimuth error.  

 

It is also possible to register for BASEDATA(55) and BASEDATA_ELEV(301). This requires additional 

logic in the algorithm to distinguish between the first surveillance scan and the subsequent Doppler 

scans in a split-cut elevation. With BASEDATA(55) radial messages, the messages from both scans of a 

split cut will have the same elevation index but a different scan number. With BASEDATA_ELEV(301) 

elevation messages, both messages from a split cut have the same elevation index.  

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 125 of 202 

Note that the measured / non-processed Dual Polarization fields (KDP, PHI, and RHO) are only 

provided in the SR_BASEDATA(76), SR_REFLDATA(78), and SR_COMBBASE(77) and that the derived / 

processed Dual Polarization fields are only available in the DUALPOL_BASEDATA(305), 

DUALPOL_REFLDATA(307), and DUALPOL_COMBBASE(306). 

 

 
Velocity Dealiasing  
 

Generally, all processing of the basic moment (R, V, SW) data except velocity dealiasing is 

accomplished by the RDA. This includes: signal processing, conversion to meteorological units, point 

target suppression, suppression of data below a set threshold, and range unfolding. Additional 

information can be obtained from the FMH 11, Part B.  

 

The following discussion has been simplified by using only the original base data types. The 

recombined rawdata types are not included.  RECOMBINED_REFL_RAWDATA, 

RECOMBINED_COMB_RAWDATA, and RECOMBINED_RAWDATA have been removed in Build 12 and 

should not be used.   

 

 

Velocity data that has not been dealiased can be obtained by reading from the rawdata linear buffer 

rather than the basedata linear buffer. USING RAWDATA(54) IS NOT RECOMMENDED UNLESS 

THE ORPG VELOCITY DEALIASING ALGORITHM MUST BE BYPASSED.  

 When reading from the rawdata linear buffer you must register for REFL_RAWDATA(66) rather 

than REFLDATA(79) or COMB_RAWDATA(67) rather than COMBBASE.  

 As with any of the 'BASEDATA' types, registering for RAWDATA(54) requires additional logic in the 

algorithm to distinguish between the first surveillance scan and the subsequent Doppler scans in 

a split-cut elevation. For VCP 121 this is more complicated than when registering for any of the 

'BASEDATA' types because all of the multiple Doppler scans at the lower levels are present in 

RAWDATA(54).  

 There is no corresponding complete elevation message for reading pre-dealiased data.  

 

Pre-Processing Dual Polarization Data  
 

The RDA provides three Dual Polarization data fields (ZDR, PHI, and RHO).  The ORPG processes 

these three fields (includes a smoothing technique) and generates six additional Dual Polarization data 

fields (SNR, SMZ, SMV, KDP, SDZ, and SDP). 

 

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 126 of 202 

 

Part B. Base Data Radial Message  
 

The ORPG provides WSR-88D radar data to algorithms in the message format shown below. Each 

message represents one radial of polar coordinate base data. The radial message structure and defined 

offsets are documented in basedata.h.  

 

IMPORTANT NOTE: The base data radial messages defined in this document are internal to the 

ORPG and used by the ORPG algorithms. This message is not the same as the base data 

radial message that is passed from the RDA to the ORPG. The message described here is 

defined by the C structure Base_data_radial which contains the structure Base_data_header. 

 

The other structures defined in basedata.h (RDA_basedata_header and 

ORDA_basedata_header) should be ignored.  

 

The first part of the message is the Base Data Header with a structure documented in Appendix D. 

Much of this information is not of interest to the algorithm developer but used by the ORPG 

infrastructure. Certain fields (flagged with "I" in the table) contain data that are placed into the header 

portions of the final ICD formatted product. The legacy FORTRAN algorithms access the message 

contents via an offset into the memory block. The ORPG infrastructure and algorithms written in ANSI-

C can access the message via a defined structure.  

 

 

 

Base Data Radial - Beginning with ORPG Build 10 
 

The actual data follow the header. Beginning with Build 10 these arrays are not in a specified order. The 

velocity and spectrum width blocks may contain either 920 values (230km range) or 1200 values 

(300km range) and the size of the reflectivity block may contain either 460 values (460 km range) 1840 

values (460 km range in 1/4 km increments).  

 

For all moments, the number of valid data value may be fewer than the block size depending on the 

range or elevation that data are sampled. Offsets that access the data blocks and header fields that 

specify their size are described later in this document.  

 

Following the original basic moment data are a series of generic moment structures which will contain 

the advanced Dual Polarization data fields.  This structure is documented in Appendix E.  The Build 10 

ORPG radial message supports this additional data but the data are not fully supported until 

Build 12. 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 127 of 202 

 

 

   Base Data Header  
 

length of * 
 

   Velocity Data  

 

Three data arrays. Beginning with Build 10 

these arrays are not in a specified order. 

 

 

The Velocity and Spectrum Width moments are 

920 or 1200 16-bit integer data arrays 

 

 

 

 

 

The Reflectivity moment is an 

460 or 1840 16-bit integer data array 
 

   Spectrum Width Data  

 

   Reflectivity Data  

 

   Generic Moment Data  

 

A series of Generic Moment Structures 

containing data in an unspecified order. The data 

arrays can be 8 / 12 / 16 / 32 bit integers or IEEE 

floating point. 

 

Beginning with Build 10, Reflectivity Data 

obtained during second cut of a split cut (CD 

scan) may be included. 

 

In a future Build, Dual Polarization Data Fields 

will be added.  

   Generic Moment Data  

 

   Generic Moment Data  

 

 

*The Base Data Header is subject to change.  Because of this a standard size should never be 

assumed.  The definition of BASEDATA_HD_SIZE is defined as (sizeof(Base_data_header) 

/ sizeof(short)). 

 

 

Offsets for the Radial Message  

 

The guidance for accessing the basedata data arrays has been changed. Previously defined 

offsets (such as BASEDATA_HD_SIZE, BASEDATA_VEL_OFF, BASEDATA_DOP_SIZE, etc.) could 

be used to access the three data moments. The method is no longer approved and will not 

work beginning with Build 10 ORDA.  All algorithms in development must be modified to 

use the offset fields in the base data header as described below.  

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 128 of 202 

If ingesting data from a Build 10 ORDA or later, the basic data moments (reflectivity, velocity, and 

spectrum width) are not necessarily in any specified order. Therefore the required method of accessing 

the data blocks is using the offset fields in the base data header: ref_offset, vel_offset, and 

spw_offset. These offsets are in bytes relative to the beginning of the base data header. NOTE: These 

offset fields have a different meaning in the elevation base data message.  

 

The position of the first good data value (usually 1) is determined by the fields: surv_range and 

dop_range. The number of valid data values within the array is determined by the value of n_dop_bins 

and n_surv_bins.  

 

The algorithm API provides support for accessing the data arrays. Functions RPGC_get_surv_data, 

RPGC_get_vel_data, and RPGC_get_wid_data use the offsets to obtain the beginning of the 

reflectivity, velocity, and spectrum width data. The function RPGC_get_radar_data is used to access 

the dual polarization data. See Part G., Reading Base Data Messages, in Volume 3, Document 2 Section 

II.  

 

 

The Number and Size of Radial Data Arrays  
 

See this topic at the end of Part D - Selecting Desired Base Data Messages. 

 

 

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 129 of 202 

 

Part C. Base Data Elevation Message  
 

The ORPG provides a second message format to algorithms. This message represents a collection of all 

radial data comprising a complete elevation scan. The elevation message structure and defined offsets 

are documented in basedata_elev.h.  Note that in Build 10 the Compact_basedata_elev structure in 

basedata_elev.h was modified to require allocation of memory for each Compact_radial structure. 

 

The first part of the message is a short header providing number of radials in the elevation, the type of 

elevation, and the elevation index. The type field corresponds to msg_type in the base data header and 

the elev_ind field corresponds to rpg_elev_ind.  

 

 

Base Data Elevation - Beginning with ORPG Build 10  
 

The actual radial data follows the elevation header. Beginning with Build 10 these arrays are not in a 

specified order. As with the Base Data Radial Message the velocity and spectrum width blocks may 

contain either 920 values (230km range) or 1200 values (300km range) and the size of the reflectivity 

block may contain either 460 values (460 km range) or 1840 values (460 km range in 1/4 km 

increments). The size of the message has been reduced by using only 1 byte for each data value rather 

than a 2-byte integer.  

 

 

ELEV HDR    num_radials  type  elev_ind  
 

 length of 4 16-bit integers  
 

 
Compact 
Radial  

Base Data Header  
 

length of * 
 

Velocity Data  

 

Three data arrays. Beginning with Build 10 

these arrays are not in a specified order. 

 

The Velocity and Spectrum Width moments are 

920 or 1200 8-bit integer data arrays 

 

 

The Reflectivity moment is an 

460 or 1840 8-bit integer data array 
 

Spectrum Width Data  

 

Reflectivity Data  

 

 

 

   

.     .     .     .     .       
Repeated for N number of 

radials 

.     .     .     .     .       
 

   

 

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 130 of 202 

 
Compact 
Radial   

Base Data Header  
 

 length of * 
 

Velocity Data  

 

Three data arrays. Beginning with Build 10 

these arrays are not in a specified order. 

 

The Velocity and Spectrum Width moments are 

920 or 1200 8-bit integer data arrays 

 

 

The Reflectivity moment is an 

460 or 1840 8-bit integer data array 
 

Spectrum Width Data  

 

Reflectivity Data  

 

 

*The Base Data Header is subject to change.  Because of this a standard size should never be 

assumed.  The definition of BASEDATA_HD_SIZE is defined as (sizeof(Base_data_header) 

/ sizeof(short)). 

 

Offsets for the Elevation Message 

 

The guidance for accessing the basedata data arrays has been changed. Previously defined 

offsets BASEDATA_DOP_SIZE and BASEDATA_REF_SIZE (defined in basedata.h) and their 

starting locations determined by BASEDATA_VEL_PTR, BASEDATA_WID_PTR, and 

BASEDATA_REF_PTR (defined in basedata_elev.h) could be used to access the three data 

moments. The method is no longer approved and will not work beginning with Build 10 

ORDA.    

 

If ingesting data from a Build 10 ORDA or later, the basic data moments (reflectivity, velocity, and 

spectrum width) are not necessarily in any specified order. Therefore the required method of accessing 

the data blocks is using the offset fields in the base data header: ref_offset, vel_offset, and 

spw_offset. WARNING: Prior to Build 10 these offsets are in bytes relative to the beginning of the 

base data header. After Build 10 these offsets are in bytes relative to the beginning of the first data 

array (e.g., just after the end of the basedata header).  
 

The position of the first good data value (usually 1) is determined by the fields: surv_range and 

dop_range. The number of valid data values within the array is determined by the value of n_dop_bins 

and n_surv_bins.  

 

The algorithm API does not provide support for reading the data elements contained in the elevation 

message. Very few algorithms use the elevation message. See the EPRE algorithm in cpc013/tsk003 

(this algorithm is being modified in Build 10 to use the header offsets to access moment data array).  

 

 

The Number and Size of Radial Data Arrays  
 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 131 of 202 

See this topic at the end of Part D - Selecting Desired Base Data Messages. 

 

 
 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 132 of 202 

 

Part D. Selecting Desired Base Data Messages  
 

 

IMPORTANT NOTE: The base data radial messages defined in this document are internal to the 

ORPG and used by the ORPG algorithms. This message is not the same as the base data 

radial message that is passed from the RDA to the ORPG. The message described here is 

defined by the C structure Base_data_radial which contains the structure Base_data_header. 

 

The other structures defined in basedata.h (RDA_basedata_header and 

ORDA_basedata_header) should be ignored.  

 

 

Radial Base Data Messages  
 

Most algorithms obtain base data reading individual radial messages rather than the elevation base data 

messages. There are 3 base data types that are registered within the 3 categories below.  

 

Registration Name  
Basic Moments 

Present 

Dual Pol Data Fields 

Present 

Resolution / Size of the   

Data Arrays 

 R V W 
Non 

Processed 

Derived / 

Processed 

Reflect 

Res 

Doppler 

Range 

Azimuth 

Sampling 
1. Original Data Registrations  Note 5 
REFLDATA(79) Yes   

  
1000 m  
Note 2 

300 km / 

230 km 
Note 2 

0.5 Deg /  

1.0 Deg 
Note 1 

COMBBASE(96) Yes Yes Yes 
BASEDATA(55) Yes Yes Yes 
2. Super Resolution Data Registrations (available in Build 10) 
SR_REFLDATA(78) Yes   ZDR  

PHI  

RHO     
Note 3 

 
250 m  
Note 2 

300 km / 

230 km 
Note 2 

0.5 Deg /  

1.0 Deg 
Note 1 

SR_COMBBASE(77) Yes Yes Yes 

SR_BASEDATA(76) Yes Yes Yes 

3. Dual Polarization Data Registrations (available in Build 12) 
DUALPOL_REFLDATA(307) Yes   

 
 

Note 4 
250 m         

300 km / 

230 km 
Note 2         

1.0 Deg         DUALPOL_COMBBASE(306) Yes Yes Yes 
DUALPOL_BASEDATA(305) Yes Yes Yes 

 

 
Note 1  The current VCPs provide 0.5 deg azimuth sampling at the Super Resolution elevations 

(lower elevations including the split cut elevations) and provide 1.0 deg azimuth sampling at 

other elevations. 
Note 2 The latest design for Build 12.1 is to provide the higher 250 meter horizontal resolution 

for reflectivity at all elevations and the extended 300 kilometer range for Doppler data 

at lower elevations (Contiguous Doppler and Batch).    
Note 3 The non-processed (measured) Dual Polarization data fields are available in Build 12 

with data produced by a Build 12 RDA.  



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 133 of 202 

Note 4 The identity of the Processed and Derived Dual Polarization data fields available in this 

message are listed below in Part D.   
Note 5 For the original data registrations the ORPG recombines the higher resolution data in 

order to provide the original azimuth sample interval (1.0 deg) and the original 1 km 

surveillance interval. The Doppler range (corresponding to the maximum number of 

bins) remains at 300 km at lower elevations.   

All existing algorithms were modified to only use 230 km Doppler range.  However, 

product 99, Base Velocity Data Array Product (DV), uses the 300 km Doppler range on 

the elevations provided. 
 

 

Even though not used by any current algorithm, it is possible to by-pass the ORPG velocity dealiasing 

accomplished in the ORPG. There are 3 raw data types that can be registered within the categories 

below. 

 

Registration Name  
Basic Moments 

Present 

Dual Pol Data Fields 

Present 

Resolution / Size of the   

Data Arrays 

 R V W 
Non 

Processed 

Derived / 

Processed 

Reflect 

Res 

Doppler 

Range 

Azimuth 

Sampling 
Pre - Dealiased Data Registrations (Before Build 10) 
REFL_RAWDATA(66) Yes   

  1000 m 230 km 1.0 Deg COMB_RAWDATA(67) Yes Yes Yes 
RAWDATA(54) Yes Yes Yes 
Pre - Dealiased Data Registrations (After Build 10)  
REFL_RAWDATA(66) Yes   ZDR  

PHI  

RHO        
Note 3 

 
250 m  
Note 2 

300 km / 

230 km 
Note 2 

0.5 Deg / 

1.0 Deg 
Note 1 

COMB_RAWDATA(67) Yes Yes Yes 

RAWDATA(54) Yes Yes Yes 

 

 

1. Original Resolution Data Registrations 

These are the Legacy base data types provided in the original WSR-88D. These data registrations 

provide  

o The original three base data moments at the original resolution. See the Summary of 

Elevation and Radial Characteristics below. 

REFLDATA(79)  

This data type is only used when there is no need for radial velocity or spectrum width 

moments. Reflectivity data is the only basic moment contained in the message.  
COMBBASE(96)  

This data type is used when either velocity or spectrum width is needed. All moment data 

(reflectivity, velocity, spectrum width) is contained in the message.  
BASEDATA(55)  

This data type is rarely used because it requires additional work in the algorithm and 

additional knowledge of the VCP and split cuts. Like COMBBASE all original moments 

(reflectivity, velocity, spectrum width) are available. Since (beginning with Build 9) 

radials in all elevation scans are aligned, there is normally no advantage for using 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 134 of 202 

BASEDATA. For an example of use, see the recclalg task in cpc004/tsk006.  See Split 

Cuts below.  

 

2. Super Resolution Data Registrations (available in Build 10)  

These data registrations provide  

o The original three base data moments but at the increased resolution as determined by the 

VCP definitions. See the Summary of Elevation and Radial Characteristics below.  

o Beginning with Build 12, the Non-processed (or Measured)Dual Pol Fields (listed in Part 

D below) are included.  

SR_REFLDATA(78)  

As with REFLDATA, reflectivity is the only basic moment contained in the message.  
SR_COMBBASE(77)  

As with COMBBASE, all basic moment data (reflectivity, velocity, spectrum width) is 

contained in the message.  
SR_BASEDATA(76)  

As with BASEDATA, this type is rarely used because it provides no additional information 

and requires additional work in the algorithm and additional knowledge of the VCP and 

split cuts. For an example of use, see the superes8bit task in cpc007/tsk015.  See Split 

Cuts below. All original moments (reflectivity, velocity, spectrum width) are available.  

 

3. Dual Polarization Data Registrations (available in Build 12)  

These data registrations provide  

o The original three base data moments at the increased reflectivity resolution and the 

increased Doppler range but with the original 1.0 deg azimuth sampling.   See the 

Summary of Elevation and Radial Characteristics below.  

o Beginning with Build 12, the Processed and Derived Dual Pol Fields (listed in Part D 

below) are included.   

DUALPOL_REFLDATA(307)  

As with REFLDATA, reflectivity is the only basic moment contained in the message.  
DUALPOL_COMBBASE(306)  

As with COMBBASE, all basic moment data (reflectivity, velocity, spectrum width) is 

contained in the message.  
DUALPOL_BASEDATA(305)  

As with BASEDATA, this type is rarely used because it provides no additional information 

and requires additional work in the algorithm and additional knowledge of the VCP and 

split cuts. See Split Cuts below. All original moments (reflectivity, velocity, spectrum 

width) are available.  

 

4. Pre-Dealiased Base Data Registrations  



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 135 of 202 

These data registrations are not recommended for algorithm development. There is little reason 

to bypass velocity dealiasing but pre-dealiased data can be obtained by registering of 

REFL_RAWDATA(66) or COMB_RAWDATA(67). All cuts of a split cut can be obtained by registering 

for RAWDATA(54). See Velocity Dealiasing below for more information.  

 Data is as received from the RDA.  

o Prior to Build 10 this only includes the original resolution base data moments.  

o Beginning with Build 10 the increased resolution as determined by the VCP definitions 

are provided.  

o Beginning with Build 12 the Dual Pol Fields are present on the first cut of a split cut.  

Early test Dual Pol base data contained the Dual Pol Fields on both cuts of a split cut.  

 

Elevation Base Data Messages  
 

Very few algorithms currently read the elevation base data messages. The contents of the messages are 

the same as their radial counterparts.  

1. Original Resolution Data  

REFLDATA_ELEV(302)  

   
COMBBASE_ELEV(303)  

   
BASEDATA_ELEV(301)  

   

2. Super Resolution Data (Not Available in the elevation message) 

3. Dual Polarization Data (Not Available in the elevation message)  

 

 

The Number and Size of Radial Data Arrays  
 

This is subject is covered in detail in Volume 3 and is summarized here. 

 

The best approach to take in determining the number of radials and sizing of data arrays is 

described in  is Part B of Volume 3, Document 4, Section II.  To summarize: 
 

 Determining the maximum size of the data array (number of bins) (Data above 70,000 feet 

MSL are not valid). 

CAUTION: If either statically allocating arrays for the radials or allocating a standard size at the 

beginning of an elevation, the method used must be conservative.  It is always possible for the first 

radial in an elevation to be spot blanked and contain no data bins. The reference above includes a 

discussion of attempting to preserve resources if pre-allocating all of the radial arrays at the 

beginning of an elevation. 

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 136 of 202 

 Determining the size of an individual radial (Data above 70,000 feet MSL are not valid). 

o When reading basic moments (R, V, SW) from one of the Legacy resolution data types 

(BASEDATA, REFLDATA, or COMBBASE) the maximum size of the reflectivity array is 460.  

Beginning with Build 12 the maximum size of the velocity and spectrum width arrays is 

1200 at lower elevations and 920 at higher elevations.  This must be checked every 

elevation.   Prior to Build 12 the maximum size was 920 bins. The reference above contains 

details and sample code that includes consideration of the 70,000 foot limit and product 

range limit. 

o When reading basic moments (R, V, SW) from one of the super resolution data types 

(SR_COMBBASE, etc.) or the dual pol data types (DUALPOL_COMBBASE, etc.) the size of the 

reflectivity array can be either 460 or 1840.  Beginning with Build 12 the maximum size of 

the velocity and spectrum width arrays is 1200 at lower elevations and 920 at higher 

elevations.  This must be checked every elevation.   

o When reading one of the Dual Polarization fields the number of valid data values within the 

array is determined by the value of no_of_gates field in the generic moment structure. The 

standard sizes of the Dual Pol field arrays are either 1200 or 1840.  The reference above 

contains details and sample code that includes consideration of the 70,000 foot limit and 

product range limit.  The presence of the Dual Pol fields must be checked every 

elevation. 

 

 Determining the radial spacing. When reading the first radial of an elevation, the field azm_reso 

is used obtain the radial spacing. If the value is 1, the radials are in the new higher resolution of half 

degree spacing. This must be accomplished every elevation if reading one of the Super 

Resolution data types (SR_COMBBASE, etc.). 

 

 Determining the data sample bin size (in range). When reading the first radial of an elevation: 

o For the basic moments (R, V, SW) the field surv_bin_size is used to obtain the size of the 

surveillance bins and determine the range of the data. If the value is 250, the surveillance 

data is in the higher resolution of 250 meters.  

o For the Dual Pol data the bin_size field in the generic moment structure is used to obtain 

the size of the Dual Pol data bins and determine the range of the data. 

 

In addition,  

 For basic moments, the fields n_dop_bins / n_surv_bins must be checked when reading each 

radial to ensure data beyond the last good bin is not used (and the algorithm's data array padded 

with zero's).  This can eliminate checking for the spot blank field in the basedata header. 

 

 For Dual Pol data, the field no_of_gates must be checked when reading each radial to ensure 

data beyond the last good bin is not used (and the algorithm's data array padded with zero's). 

 

 

Following this procedure will accommodate any future changes to the design of the VCPs. 

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 137 of 202 

 

Part E. Dual Polarization Data Fields  
 

The descriptions of these data fields will be expanded in future versions of this guide.  

 

NOTE:  Preliminary support for Dual Pol data was provided in Build 12 in order to support 

implementation.  Actual Dual Polarization implementation is provided in Build 12.1 and Dual 

Pol data is available in data produced by a Build 12 RDA. 

Some details concerning Dual Pol data as described in this document are subject to change.  

 

 

IMPORTANT NOTE: The base data radial messages defined in this document are internal to the 

ORPG and used by the ORPG algorithms. This message is not the same as the base data 

radial message that is passed from the RDA to the ORPG. The message described here is 

defined by the C structure Base_data_radial which contains the structure Base_data_header. 

 

The other structures defined in basedata.h (RDA_basedata_header and 

ORDA_basedata_header) should be ignored.  

 

 

Non-Processed (or Measured) Dual Pol Fields  
 

The following data fields are received from the ORDA (Build 12) data stream. They are contained in the 

SR_REFLDATA, SR_COMBBASE, and SR_BASEDATA data types and in the raw data types.  

 

ZDR Differential Reflectivity 

   

PHI Differential Phase   

   

RHO Correlation Coefficient  

   

 

Processed and Derived Dual Pol Fields  
 

The Build 12 ORPG creates additional data fields called Processed Dual Pol Fields.  

 

The following fields along with the 3 basic moments are in DUALPOL_REFLDATA, DUALPOL_COMBBASE, 

and DUALPOL_BASEDATA. This is the primary source of Dual Polarization moments for algorithms. 

 

DZDR Differential Reflectivity - processed 

   

DPHI Differential Phase - processed (long gate)  

   

DRHO Correlation Coefficient - processed  

   



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 138 of 202 

DSNR Signal-to-Noise Ratio  

   

DSMZ Smoothed Reflectivity  

   

DSMV Smoothed Velocity  

   

DKDP Specific Differential Phase  

   

DSDZ Texture (standard deviation) of Reflectivity  

   

DSDP Texture (standard deviation) of Differential Phase  

   

If special quality index fields are desired in addition to the 9 Dual Polarization data fields, the 

intermediate product DP_BASE_AND_QUALITY(320) can be used.  

 

If melting layer data and hydrometer classification data are needed in addition to the 9 Dual Polarization 

data fields, the intermediate product HCA(321) can be used.   

 

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 139 of 202 

 

Part F. Characteristics of the WSR-88D Volume  
 

The Elevation Characteristics and Radial Characteristics are summarized together in a table below 

covering WSR-88D Builds 8, 9, and 10. Knowledge of previous builds is provided in the event historical 

radar data is ingested into the ORPG.  

 

Using Historical Radar Data  
 

When ingesting historical radar data remember: 

 With the original RDA (prior to the Build 9 ORDA), the radials were not aligned to a 

specific azimuth and not aligned from one elevation to the next.  The number or radials 

in an elevation scan often varied slightly. 

 The Build 10 and later ORPG makes "recombined" data available to algorithms using 

the original 1.0 deg sample interval, 1 km surveillance resolution and 230 km Doppler 

range, regardless of the nature of the input data. 

 The higher resolution data types will not be available if ingesting historical data from an 

RDA prior to Build 10.  The Dual Polarization data types will not be available if 

ingesting historical data prior to Build 12. 

 

 

Summary of Elevation and Radial Characteristics 

WSR-88D 

Build  

Radials 

Aligned  

Number 

of 

Radials  

Radial 

Spacing  

Beam 

Width  

Surveillance  Doppler  

Interval  Range  Interval  Range  

Legacy RDA  No  ~366  ~0.98 deg  (see text)  1 km  460 km  250 m  230 km  

Build 9 ORDA  Yes  360  1.0 deg  (see text)  1  km  460 km  250 m  230 km  

Build 10 ORDA 

   
Yes  360  1.0 deg  (see text)  250 m* 460 km  250 m  300 km* 

Build 10 ORDA 
(SR Elevations)  

Yes  720  0.5 deg  (see text)  250 m*  460 km  250 m  300 km*  

 

* The higher 250 meter horizontal resolution for surveillance data and the extended 300 

kilometer range for Doppler data are limited to the Super Resolution Elevations in the Build 10 

VCP designs.  

The latest design for Build 12.1 is to provide the higher 250 meter horizontal resolution 

for surveillance data at all elevations and the extended 300 kilometer range for Doppler 

data at lower elevations (Contiguous Doppler and Batch).   Appropriate data fields in the 

radial message header must be used when reading base data containing the higher resolution 

data fields to determine the actual array size.   

The ORPG recombines the higher resolution data in order to provide the original 

azimuth sample interval (1.0 deg) and the original 1 km surveillance interval. The 

Doppler range (corresponding to the maximum number of bins) remains at 300 km.  All 

existing algorithms were modified to only use 230 km Doppler range.  However, product 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 140 of 202 

99, Base Velocity Data Array Product (DV), uses the 300 km Doppler range on the 

elevations provided.  

 

 

 

Elevation Characteristics  

 Number of Elevations 

Originally, a volume scan strategy could not contain more than 20 elevations. This has been 

increased to 25.  

 

 Radial Spacing  

o Legacy RDA. 
Elevations normally consist of just over 360 radials. The radial spacing is typically 

between 0.95 degrees and 1.1 degrees. Under certain rare conditions, an elevation could 

contain up to 400 radials. Radial spacing is relatively stable for a given radar, however.  

o Build 9 ORDA. 
Elevations normally consist of exactly 360 radials. The radial spacing is typically 

between 0.9 degrees and 1.1 degrees. Under certain rare conditions, an elevation could 

contain up to 400 radials.  

o Build 10 / 12 ORDA. 
With the current VCP definitions, the new 0.5 degree sample interval occurs at the lower 

elevations.  The Build 12.1 design is through the split cut elevations. Note 1 

 1 Degree Sample Interval: Elevations normally consist of exactly 360 radials. The 

radial spacing is typically between 0.9 degrees and 1.1 degrees. Under certain rare 

conditions, an elevation could contain up to 400 radials.  

 0.5 Degree Sample Interval: Elevations normally consist of exactly 720 radials. The 

radial spacing is typically 0.5 degrees. Under certain rare conditions, an elevation 

could contain up to 800 radials.  

 

 Radial Alignment  

o Legacy RDA. Elevations do not begin at the same azimuth and radials from one elevation 

are not aligned with radials in other elevations. After the radar antenna has repositioned 

to a new elevation angle, data sampling begins when radar parameters (including antenna 

positioning) have stabilized within specified limits.  

o Build 9 ORDA & Build 10 ORDA. Even though elevations do not begin at the same azimuth, 

radials from one elevation are aligned with radials in other elevations (typically within 

0.1 degrees). After the radar antenna has repositioned to a new elevation angle, data 

sampling begins when radar parameters (including antenna positioning) have stabilized 

within specified limits.  

 

 Antenna Position Accuracy 

The radar pedestal positioning accuracy is ± 0.2 degrees in elevation and azimuth.  

Note 1:  For all but the Super Resolution base data types, the data are recombined in the 

ORPG into 1.0 degree radials. 

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 141 of 202 

 

Radial Characteristics  

 Beam Width.  

o Legacy RDA. 
The antenna beam width (actually half power beam width) is nominally 0.95 degrees. 

Radials are spaced approximately every degree.  

o Build 9 ORDA. 
The antenna beam width (actually half power beam width) is nominally 0.95 degrees. 

Radials are spaced approximately every degree.  

o Build 10 ORDA.  
 1 Degree Sample Interval: The antenna beam width (actually half power beam 

width) is nominally 0.95 degrees. However the effective beam width could be as 

much as 1.5 degrees due to the time windowing sampling function. Radials are 

spaced every whole degree.  

 0.5 Degree Sample Interval: The antenna beam width (actually half power beam 

width) is nominally 0.95 degrees. However the effective beam width could be as 

much as 1.1 degrees due to the time windowing sampling function. Radials are 

spaced every half degree.  

 

 Surveillance Range / Interval  

o Legacy RDA & Build 9 ORDA: 
Reflectivity range precision is one data point every 1.0 kilometers from 1 km to 460 km. 

Note 1.  

o Build 10 / 12 ORDA:  
Reflectivity range precision is one data point every 1.0 kilometers from 1 km to 460 km 

or one data point every 0.25 kilometers from 0.25 km to 460 km. Note 1, Note 3 

 

 Doppler Range / Interval  

o Legacy RDA & Build 9 ORDA: 
Radial velocity and spectrum width range precision is one data point every 0.25 

kilometers from 0.25 km to 230 km. Note 1.  

o Build 10 / 12 ORDA: 
Radial velocity and spectrum width range precision is one data point every 0.25 

kilometers from 0.25 km to 230 km or 300 km. Note 1, Note 4.  

 

 Location of first bin. 

For the ORPG internal data used by algorithms:  

o Legacy RDA. 
The center of the first reflectivity bin is normally at 0 kilometers from the radar (placing 

half of the first bin behind the radar). The center of the first Doppler bin (velocity and 

spectrum width) is 0.125 kilometers from the radar (placing the leading edge of the bin at 

the antenna).  

o Build 9 ORDA & Build 10 ORDA. 

The range to the leading edge of the first surveillance bin is 0 km and the range to the 

leading edge of the first Doppler bin is also 0 km. These correspond to center ranges of 

500 m and 125 m, respectively.  

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 142 of 202 

Note 1:  There is no requirement for data above 70,000 feet MSL. Data values at ranges where 

altitude exceeds 70,000 feet MSL are not valid.  

Note 2:  The range scale corresponds to slant range along the beam, not the distance across the 

earth's surface.  

Note 3: The surveillance range interval can be configured as either 1 km or 0.25 km in the 

Build 10 ORDA VCPs.  The Build 10 VCP design uses a 0.25 km range interval at 

the super resolution elevations and 1 km range at other elevations. The Build 12.1 

VCP definitions provide 0.25 km reflectivity range interval for all elevations.   
The data are recombined in the ORPG to obtain the 1 km resolution for use with the 

original base data types. 

Note 4:  Before Build 12 the maximum Doppler range can be configured as either 230 km or 

300 km in the ORDA VCPs.  The Build 10 VCP design used a 300 km Doppler range 

at the super resolution elevations and the 230 km Doppler range at other elevations.  

The Build 12.1 VCP definitions provide 300 km Doppler range for lower 

elevations (Contiguous Doppler and Batch).   

 

 

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 143 of 202 

 

Part G. Data Characteristics  
 

Encoding details and general characteristics of WSR-88D base data are provided below. Data 

requirements for coverage area, sensitivity, precision, and accuracy are documented in the WSR-88D 

System Specification (SS), Sections 3.7.1 and 3.7.2.  

 

 

Data Range and Precision  
 

The actual range of data values that can be measured is based upon many parameters and is beyond the 

scope of this introduction. The range of values that can be encoded is stated here. Generally, this 

encoding range exceeds the system's capability to measure / estimate the characteristic (no information 

is lost due to encoding limitations).  FMH 11, Part B provides a discussion on WSR-88D radar 

characteristics and data acquisition considerations.  

 

1. The precision of the data is defined as the smallest increment recorded due to the encoding 

scheme.    

2. The range of the data (minimum and maximum values) is the range that can be encoded, not the 

range of values produced by the radar. 

 

 

Basic Moment Data Fields: 

 Reflectivity (equivalent radar reflectivity Ze) 

o is provided in increments of 0.5 dBZ from -32.0 to +94.5 dBZ using 8-bit 

representation 

 Radial Velocity 
Generally the RDA is set to provide the best precision of the velocity data (Doppler resolution 

1). Under certain conditions the RDA is set to encode a greater range of velocities but with 

reduced precision (Doppler resolution 2).  

o is provided in increments of 0.5 meters/second from -63.5 to +63.0 meters/second   

using 8-bit representation (Doppler resolution 1)  

o is provided in increments of 1.0 meters/second from -127 to +126 meters/second   

using 8-bit representation (Doppler resolution 2)  

 Spectrum Width 

o is provided in increments of 0.5 meters/second from -63.5 to +63.0 meters/second 

using 8-bit representation 

Dual Polarization Measured Data Fields:  

 DZDR - Differential Reflectivity 

o is provided in increments of 0.0625 dB from -7.8750 to +7.9375 dB using 8-bit 

representation 

 DPHI - Differential Phase 

o is provided in increments of 0.3526 deg from 0.00 to 360.00 deg using 10-bit 

representation 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 144 of 202 

 DRHO - Correlation Coefficient 

o is provided in increments of 0.0033 from 0.2067 to 1.0500 (Dimensionless) using 8-bit 

representation 

 
Dual Polarization Derived Data Fields:  

 

IMPORTANT NOTE: The precision of representation of the data fields DRHO, DPHI, DKDP, and DSDZ 

significantly exceeds the specification of the preprocessing algorithm. Even though the accuracy of 

the derived / processed fields has not yet officially been determined, the precision of 

representation of these four data fields also exceed the accuracy of the data.   Any algorithm using 

the data fields DRHO, DPHI, DKDP, and DSDZ should not assume that the precision or number of 

significant digits in the decoded value are representative of the data accuracy. 

 DZDR - Differential Reflectivity - processed 

o is provided in increments of 0.0625 dB from -7.8750 to +7.9375 dB using 8-bit 

representation 

 DPHI - Differential Phase - processed  (Precision exceeds data accuracy) 

o is provided in increments of 0.016479 deg from -0.6722 to 1079.278 deg using 16-bit 

representation 

 DRHO - Correlation Coefficient - processed  (Precision exceeds data accuracy) 

o is provided in increments of 0.000013 from 0.20003 to 1.05332 (Dimensionless) using 

16-bit representation 

 DSNR - Signal-to-Noise Radio 

o is provided in increments of 0.5 dB from -12.0 to +114.5 dB using 8-bit representation 

 DSMZ - Smoothed Reflectivity 

o is provided in increments of 0.5 dBZ from -32.0 to +94.5 dBZ using 8-bit 

representation 

 DSMV - Smoothed Velocity 

o is provided in increments of 0.5 meters/second from -63.5 to +63.0 meters/second   

using 8-bit representation (Doppler resolution 1)  

o is provided in increments of 1.0 meters/second from -127 to +126 meters/second   

using 8-bit representation (Doppler resolution 2)  

 DKDP - Specific Differential Phase  (Precision exceeds data accuracy) 

o is provided in increments of 0.00019 deg/km from -2.149 to +10.650 deg/km using 

16-bit representation 

 DSDZ - Texture (standard deviation) for Reflectivity  (Precision exceeds data accuracy) 

o is provided in increments of 0.0012 dBZ from 0.00 to 30.37 dBZ using 8-bit 

representation 

 DSDP - Texture (standard deviation) for Differential Phase 

o is provided in increments of 0.4 deg from 0.0 to 101.2 deg  using 8-bit representation 

 

Data Accuracy  
 

The accuracy of the data depends upon many factors including PRF, antenna rotation rate, and clutter 

suppression. FMH 11, Part B provides a discussion on WSR-88D radar characteristics and data 

acquisition considerations. Typical values for standard deviation are approximately:  



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 145 of 202 

 Reflectivity:  1 dBZ  

 Radial Velocity:  1 meter/second  

 Spectrum Width:  1 meter/second  

Dual Polarization Measured Data Fields:  

 DZDR - Differential Reflectivity:  0.3 dB  

 DPHI - Differential Phase:  2.0 deg  

 DRHO - Differential Correlation:  0.005  

Dual Polarization Derived Data Fields:  
 
Currently the accuracy of the process / derived data fields is not yet officially been determined, 

though it is likely that the accuracy of DSMZ, and DSMV are similar to the basic moments Reflectivity 

and Radial Velocity. 

 DZDR - Differential Reflectivity - processed: ?? dB 

 DPHI - Differential Phase - processed: ?? deg 

 DRHO - Correlation Coefficient - processed: ?? (Dimensionless) 

 DSNR - Signal-to-Noise Radio: ?? dB 

 DSMZ - Smoothed Reflectivity: ?? dBZ 

 DSMV - Smoothed Velocity: ?? m/s 

 DKDP - Specific Differential Phase:  ?? deg/km 

 DSDZ - Texture (standard deviation) for Reflectivity: ?? dBZ 

 DSDP - Texture (standard deviation) for Differential Phase: ?? deg 

 

Encoding / Decoding Data  
 

The algorithm API includes convenience functions to assist in encoding and decoding radar moment 

data (reflectivity, radial velocity, and spectrum width) and decoding advanced data fields (Dual Pol 

data). See CODE Guide Vol 3, Doc 2, Section IV.  

 

The scale / offset formula 
 

Beginning with Build 10, a new method has been published for specifying the linear encoding and 

decoding of real data in unsigned integers contained in basedata messages.  

 

These formulas are NOT applied to any value of the scaled integer which represents a flag value (e.g.; 

"range folded").   They are only meaningful for the encoding and decoding of numerical data values.  

Currently all basic moment data and Dual Polarization data fields reserve data levels 0 and 1 for 

flag values.  In other words data levels 0 and 1 are not used for encoded numerical values. 
 

The maximum range of values in the encoded integer is limited by the type (unsigned char, unsigned 

short, or unsigned int) minus the integer values used for flag values. 

 
     encoded_integer = (float_value * SCALE) + OFFSET 

 

     float_value = (encoded_integer - OFFSET) / SCALE 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 146 of 202 

 

Basic Moment Data are encoded in the least significant byte of a 16-bit integer in base data radial 

messages and encoded into individual bytes in a base data elevation message. Value 00 is a flag for 

"Data Below Threshold". Value 01 is a flag for "Signal Overlaid" (obscured by range folding).  

 

Most Dual Pol Data Fields are encoded into an 8-bit integer array.  PHI, RHO (processed), and KDP use 

a 16-bit integer array.  The values 00 and 01 are not used for encoding data levels.   

 

 

Data Encoding  
 

The non-flag data values are encoded using the standard formula:  

 
      encoded_integer = (float_value * SCALE) + OFFSET 

 

Basic Moments: 
 

 Encoded Reflectivity: 

8-bit  i = (f * 2.0) + 66.0    

 

 Encoded Radial Velocity: 

8-bit  
i = (f * 2.0) + 129.0    (Doppler resolution 1)  

i = (f * 1.0) + 129.0    (Doppler resolution 2)  

 

 Encoded Spectrum Width: 

8-bit  i = (f * 2.0) + 129.0    

 

Dual Polarization Measured Data Fields:  
 

 Encoded DZDR Differential Reflectivity: 

8-bit  i = (f * 16.0) + 128.0    

 

 Encoded DPHI Differential Phase: 

10-bit  i = (f * 2.8361) + 2.0    

 

 Encoded DRHO Correlation Coefficient: 

8-bit i = (f * 300.0) - 60.0    

 

Dual Polarization Derived Data Fields:  
 
The Scale and Offset parameters for the derived data fields DRHO, DPHI, DKDP, and DSDZ provide 

an excessive number of significant digits for the decoded values and a precision of representation 

that significantly exceeds the specification of the preprocessing algorithm and the accuracy of the 

data (though the accuracy of these fields has not yet been determined).   The Scale and Offset 

parameters for the other derived data fields provide a precision of representation reflected in the 

specification of the preprocessing algorithm. 

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 147 of 202 

 Encoded DZDR Differential Reflectivity - processed: 

8-bit  i = (f * 16.0) + 128.0    

 

 Encoded DPHI Differential Phase - processed: 

16-bit  i = (f * 60.681480) + 42.792198   Precision exceeds accuracy of the data 

 

 Encoded DRHO Correlation Coefficient - processed: 

16-bit  i = (f * 76800.00) - 15360.00  Precision exceeds accuracy of the data 

 

 Encoded DSNR Signal-to-Noise Radio: 

8-bit  i = (f * 2.0) + 26.0    

 

 Encoded DSMZ Processed Reflectivity: 

8-bit  i = (f * 2.0) + 66.0    

 

 Encoded DSMV Smoothed Velocity:  

8-bit  
i = (f * 2.0) + 129.0    (Doppler resolution 1)  

i = (f * 1.0) + 129.0    (Doppler resolution 2)  

 

 Encoded DKDP Specific Differential Phase: 

16-bit  i = (f * 5120.0) + 11008.0  Precision exceeds accuracy of the data 

 

 Encoded DSDZ Texture (standard deviation) for Reflectivity: 

8-bit i = (f * 8.330) + 2.000  Precision exceeds accuracy of the data 

 

 Encoded DSDP Texture (standard deviation for Differential Phase: 

8-bit i = (f * 2.50) + 2.00    

 

 

 

Data Decoding  
 

The non-flag data values are decoded using the standard formula: 

 
      float_value = (encoded_integer - OFFSET) / SCALE 

 

Basic Moments: 
 

 Reflectivity (dBZ): 

8-bit f = (i - 66.0) / 2.0    

 

 Radial Velocity (m sec
-1

): 

8-bit 
f = (i - 129.0) / 2.0    (Doppler resolution 1)  

f = (i - 129.0) / 1.0    (Doppler resolution 2)  

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 148 of 202 

 Spectrum Width (m sec
-1

): 

8-bit f = (i - 129.0) / 2.0    

 

Dual Polarization Measured Data Fields:  
 

 Decoded DZDR Differential Reflectivity (dB): 

8-bit f = (i - 128.0) / 16.0    

 

 Decoded DPHI Differential Phase (deg): 

10-bit f = (i - 2.0) / 2.8361    

 

 Decoded DRHO Correlation Coefficient: 

8-bit f = (i + 60.0) / 300.0    

 

Dual Polarization Derived Data Fields:  
 
The Scale and Offset parameters for the derived data fields DRHO, DPHI, DKDP, and DSDZ appear 

to provide an excessive number of significant digits for the decoded values and a precision of 

representation that significantly exceeds the specification of the preprocessing algorithm and 

perhaps the accuracy of the data (though the accuracy of these fields has not yet been published).  

The Scale and Offset parameters for the other derived data fields provide a precision of representation 

reflected in the specification of the preprocessing algorithm. 

 

 Decoded DZDR Differential Reflectivity - processed (dB): 

8-bit f = (i - 128.0) / 16.0    

 

 Decoded DPHI Differential Phase - processed (deg): 

16-bit f = (i - 42.792198) / 60.681480  Precision exceeds accuracy of the data 

 

 Decoded DRHO Correlation Coefficient - processed: 

16-bit f = (i + 15360.00) / 76800.00  Precision exceeds accuracy of the data 

 

 Decoded DSNR Signal-to-Noise Radio: 

8-bit f = (i - 26.0) / 2.0    

 

 Decoded DSMZ Processed Reflectivity:  

8-bit f = (i - 66.0) / 2.0    

 

 Decoded DSMV Smoothed Velocity:  

8-bit 
f = (i - 129.0) / 2.0    (Doppler resolution 1)  

f = (i - 129.0) / 1.0    (Doppler resolution 2)  

 

 Decoded DKDP Specific Differential Phase: 

16-bit f = (i - 11008.0) / 5120.0  Precision exceeds accuracy of the data 

 



Vol 2 Doc 4 Section I - Base Data Format                                                                        

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 149 of 202 

 Decoded DSDZ Texture (standard deviation) for Reflectivity: 

8-bit f = (i - 2.000) / 8.330  Precision exceeds accuracy of the data 

 

 Decoded DSDP Texture (standard deviation for Differential Phase : 

8-bit f = (i - 2.50) / 2.00    

 

 

 



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 150 of 202 

Vol 2. Document 4 - 

Additional Information & Guidance for WSR-88D Algorithm 

Developers  

Section II   Algorithm Adaptation Data - Configuration & Use  

 

BUILD 12 CHANGES:  

 

 Added recent guidance for setting edit permissions for algorithm adaptation data. 
 

 
 

 

 

Part A. Introduction  
 

The WSR-88D uses adaptation data to configure many aspects of the radar system. A portion of this 

configuration data is used to alter or customize the contents of WSR-88D products. This section contains 

an overview of algorithm specific adaptation data and procedures for proper configuration. Site specific 

adaptation data, covered in Section IV of CODE Guide Vol 2 - Document 2, contains only a few items 

of information that should be changed to correspond to the site that produced the base data being used as 

input to the algorithms.  

 

What is Algorithm-Specific Adaptation Data?  

It is not sufficient for data to be parameters that determine the functionality of an algorithm in 

order to be classified as adaptation data. The common include file is often used to define 

constants, some of which can be a parameterization of logic. Algorithm adaptation data must 

meet the following criteria.  

1. The data must represent a parameterization of algorithm logic / performance or a 

parameterization of product format.  

2. The data must be intended to be operationally field modifiable. This can be either data 

that can be changed at each site or data that may be unique to a site but require ROC 

change authority.  

3. The data must be fully documented with instructions on what each parameter is used 

for and what effects changing the parameters will have on algorithm function / 

performance.  

 

 

Previous Adaptation Method  
 



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 151 of 202 

The previous method involved the definition of the adaptation data structure in an include file. Meta data 

(in the form of specially structured comments) in that include file were used to provide attributes such 

as: name, description, units, minimum value, maximum value, list of valid values, default value, 

precision, enumeration, etc. Most adaptation data include files still contain remnants of the previous 

method. With the new DEA mechanism, the meta comments serve only as inline documentation.  

 

Example Include File The following is the contents of the include file for the VIL Echo Tops 

algorithm.  
 

/* 

 * RCS info 

 * $Author: ccalvert $ 

 * $Locker:  $ 

 * $Date: 2007/01/30 22:57:09 $ 

 * $Id: vil_echo_tops.h,v 1.9 2007/01/30 22:57:09 ccalvert Exp $ 

 * $Revision: 1.9 $ 

 * $State: Exp $ 

 */ 

/* This header file defines the structure for the VIL-Echo Tops * 

 * algorithm.  It corresponds to common block VIL_ECHO_TOPS in the * 

 * legacy code.       */ 

 

 

#ifndef VIL_ECHO_TOPS_H 

#define VIL_ECHO_TOPS_H 

 

#include <orpgctype.h> 

 

#define VIL_ECHO_TOPS_DEA_NAME "alg.vil_echo_tops" 

 

/* VIL/Echo Tops Data */ 

 

typedef struct { 

 

 freal beam_width; /*# @name "Beam Width  [BW]"  

                                  @desc Angular width of the radar beam  

                                        between the half-power points. 

        @units "degrees" @min 0.5 @max 2.0  

                                   @default 0.5  @precision 2  

                                   @legacy_name EBMWT 

    */ 

 freal min_refl; /*# @name "Min Ref Threshold  [MRT]"  

                                   @desc Minimum reflectivity used in computing 

                                         vertically integrated liquid value. 

        @units dBZ @min -33 @max 95 @default 0  

                                   @precision 2 @legacy_name ENREF 

    */ 

 fint max_vil; /*#  @name "Max VIL Threshold  [MVT]" 

         @desc Maximum allowable VIL product value. 

                                          All computed VIL values above this 

         threshold will be set to this  

                                          threshold for product display. 

         @units "kg/m**2" @min 1 @max 200 @default 1 

           */ 

} vil_echo_tops_t; 

 

#endif 



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 152 of 202 

 

 

Defining adaptation data in a single C structure is convenient but not actually required unless registering 

the adaptation data reading function as a callback as explained in Part D.  

 

 

DEA Adaptation Data  
 

The Data Element Attribute (DEA) Method involves the definition of the adaptation data elements in a 

special meta file called a DEA file. This file also includes initial data values and meta information 

similar to the previous method including: name, description, value, type, range of values or list of 

values, accuracy, enumeration and change permission. These data are automatically installed into an 

internal adaptation data database during an ORPG start.  

 

Reading DEA Adaptation Data within an Algorithm  

 

Within an algorithm, variables must be defined for each data element of the adaptation data. A C 

structure is a convenient method of aggregating these variables (with Fortran a common block is used). 

Special functions to read each adaptation data element is provided as part of the algorithm API. These 

API calls read the current element value from the database which must be assigned to the defined local 

variable for use within an algorithm. Typically a 'DEA access function' is written to read all applicable 

data elements using these API calls and is made part of the algorithm. The algorithm updates the local 

variables by calling the access function as required (beginning of volume, when processing begins, etc.).  

 

Though the 'DEA access function' can be executed by the algorithm to read and update the local data 

variables, another API call can be used to register this function as a callback. The ORPG infrastructure 

will then use the 'access function' to update the data element variables at the designated frequency.  

 

The source location of the dea file is the ~/src/cpc104/lib006 directory.  The run-time location is in 

the ~/cfg/dea directory.  For development activities the current file must be in the run-time location 

(~/cfg/dea).  When delivering an algorithm to the ROC for integration it must be in the source 

location. 

 

Summary of Steps  

 
New Algorithm Development  

 Determine algorithm parameters to include in adaptation data.  

 Create a dea file in the ~/cfg/dea directory.  

 Write a 'DEA access function' (as part of the algorithm) using API calls to read the data 

elements.  

 Optionally, register the 'access function' as a callback at the beginning of the algorithm. This 

provides a slight resource savings since the data are only read from the database if updated 

(modified).  

 Restart the ORPG to install the data.  

Modification of an Existing Algorithm  

 Review existing algorithm parameters to include in adaptation data.  



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 153 of 202 

 If modifying existing adaptation data  

o Locate and modify the dea file in the ~/cfg/dea directory.  

o Modify the existing 'access function' which reads the data elements using API calls. This 

function could either be  

 part of the algorithm (and optionally registered as a callback function), or  

 part of the adaptation data library (and optionally registered as a callback 

function)**  

 If creating new adaptation data  

o Create a dea file in the ~/cfg/dea directory.  

o Write a 'DEA access function' (as part of the algorithm) using API calls to read the data 

elements.  

o Optionally, register the access function as a callback at the beginning of the algorithm. 

This provides a slight resource savings since the data are only read from the database if 

updated (modified).  

 Restart the ORPG to install the data.  

** Modification of the adaptation library is not recommended for development activity that is not 

directly involved with the ROC in integrating new algorithms into the operational ORPG. If 

modifying an existing algorithm having a data access function already integrated into the shared 

library, an alternative to modifying the original access function is to develop a new access function 

that reads the new adaptation data elements.  

 

 

 



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 154 of 202 

 

Part B. DEA File Description  

 

File Name  
 

The name of the algorithm DEA file must end in '.alg'. The first part of the filename is chosen to be 

descriptive of the algorithm.  

 

File Format  
 

A data element attribute file is an ASCII file that contains attribute values of a set of data elements. Each 

line in the file specifies one or more attributes for one data element. If the first non-spacing character is 

"#", the line is treated as a comment line. A comment line is not a line of specification and is, thus, 

ignored.  

 

Leading and trailing "space" and "tab" characters in each line are discarded. If a line is continued by 

using the "\" character immediately prior to the line feed, then the leading white space on the continued 

line is ignored as well.  

 

The following are special formatting tokens: equals sign "=", colon ":", semi-colon ";", comma ",", 

backslash "\", brackets "[]", braces "{}", parentheses "()", and "@". To avoid ambiguity, if any of these 

symbols are used for another purpose, it should be quoted with a "\", for example "\@" or "\\". White 

space is also insignificant on either side of the certain formatting tokens: "=", ":", ";", ",", "{", "}", "[", 

"]". For example, name= short, name =short and name=short are identical.  

 

Data Elements  
 

A data element is a data object that has a defined physical meaning and can be described by a set of 

attributes. A data element can be one of the primitive types such as integer, floating point number or 

character string. A data element can have a value or an array of values. A data element can have a set of 

defined attributes such as name, type, value, unit and so on.  

 

Element Identifier  
 

The first token in a line is the data element identifier if it is NOT one of the attribute names followed by 

"=".  

 

In algorithm adaptation data DEA files, the data element identifier is usually a simple identifier name. 

However, the data element identifier can contain multiple fields separated by ".". One example is 

"alg.precip_detect.max_elev". This is the algorithm adaptation data called "max_elev" for the for 

the adaptation data name "precip_detect". This is the inverse of the DEA filename 

precip_detect.alg. For algorithm DEA files, the alg.precip_detect prefix is not used.  

 

Element Attributes  
 

Following the data element identifier is a number of sections terminated by ";". Each section specifies 

an applicable attribute for the data element. Each section must be in the form of "attribute_name = 



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 155 of 202 

attribute_description;" where attribute_name must a member of a specified list which includes: 

"name", "type", "unit", "range", "value", "default", "description", "permission", "enum", etc.  

 name: The name of the data element. An example is "name = Radar location - latitude;". 

The name will appear in the hci editor application.  

 type: One of the following type names:  

o "int", "short", "byte" (4-byte, 2-byte and 1-byte integer respectively),  

o "bit" (1-bit data), "float", "double" (4-byte and 8-byte IEEE floating point numbers 

respectively),  

o "string" (ASCII character string),  

o "uint", "ushort" and "ubyte" (unsigned versions of int, short and byte).  

An example is "type = int;". If type is not specified, "int" is assumed.  

 unit: The physical unit of the data value. Standard unit names are to be defined. Examples are 

"unit = meter;" and "unit = percent".  

 range: The set of all valid values for the data element. The range can be specified with one of 

the following three formats:  

o Single interval specification defined by "[min, max]" where "min" and "max" are 

respectively the minimum and maximum values. Examples are: "range = [1, 2];" and 

"range = [A, Z];" (character string type). Non-inclusive boundaries using "(" and ")" 

are not currently used.  

o A list of valid values: { v1, v2, ...}. Examples are "range = {1, 2, 3};" and 

"range = {reflectivity, velocity, spectrum width};.  

o A named method that checks the range. A description of this method is not included with 

this document.  

 accuracy: The accuracy of the data. An example for floating point data is "accuracy = 

[0.1];"  

 value: This attribute can consist of a single value or a list of values (an array). Examples are 

"value = 1", "value = 1.0, 2., 3.0;" and "value = Yes, No;". The specifics 

concerning how arrays are specified and read by an algorithm will be covered in a future version 

of this document.  

 description: A text description of the data.  

 enum: A list of integers as an alternate representation of a set character string values. The enum 

specification must match the type and range specifications. The type must be "string". The 

range must be a set of values and the number of the valid values must be the same as the number 

of integers in enum specification. The items in the enum specification must be integers. An 

example is "enum = 0, 1;", "type = string;" and "range = {No, Yes};". In this case, the 

enum values of "No" and "yes" are respectively 0 and 1.  

 permission: A list of permission group names. An example is "permission = [ROC, 

URC];" A permission list including USR means the user (at the operational site) is permitted 

to edit the values via the appropriate password.  A permission list including ROC means that 

the ROC has authority to set the values.  Recent guidance states that if the data is editable 

by the user in the field, the permission list should only contain the following: "permission 

= [URC];"   If the permission attribute is not present, the data will not appear in the editor.   

 default: The default value for the data element. If default values are specified, the value 

attribute is left blank, for example "value = ;". If a default value is site dependent, a list of site 

names terminated with ":" proceeds each value (":" is treated as a formatting character in default 



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 156 of 202 

specification). A site name is a single token string containing the ICAO 4 letter identifier. The 

site names in the list are separated by space. The reserved site name of "Other_sites" can be 

used for all other sites that are not specified. "Other_sites" must be used after any other site 

names. Example: 

"default = KTLX KCRI: .9, Other_sites: 1.2;"  

Additional attributes will be described in future versions of this document.  

 

Sample Algorithm DEA File  
 

The following is the contents of vil_echo_tops.alg  

 

# RCS info 

# $Author: ryans $ 

# $Locker:  $ 

# $Date: 2005/12/06 21:31:39 $ 

# $Id: vil_echo_tops.alg,v 1.8 2005/12/06 21:31:39 ryans Exp $ 

# $Revision: 1.8 $ 

# $State: Exp $ 

 

    alg_name   value = Vil/Echo Tops 

 

    beam_width  value = 1.00;  

   name = Beam Width  [BW];  

   type = double;   

   range = [0.50, 2.00];  

   accuracy = [0.01]; 

   unit = degrees;   

   description = Angular width of the radar beam between \ 

                                     the half-power points.;  

 

    min_refl  value = 18.3;  

   name = Min Ref Threshold  [MRT];  

   type = double;   

   range = [-33.0, 95.0];  

   accuracy = [0.1]; 

   unit = dBZ;   

   description = Minimum reflectivity used in computing \ 

                                     vertically;  

 

    max_vil  value = ;  

   name = Max VIL Threshold  [MVT];  

   type = int;   

   range = [1, 200];  

   unit = kg/m^2;   

   description = Maximum allowable VIL product value.  \ 

                                     All computed VIL values above this;  

   default = KDDC KILX KSGF: 100, KCLX KINX KRLX KSRX: 120, 

                                 KICT: 200, Other_sites: 80;  

 

 



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 157 of 202 

 

Part C. Changing Algorithm Adaptation Parameters  
 

There are two methods for changing adaptation data parameters. One involves modifying the value 

attribute in the corresponding algorithm DEA file (.alg) and accomplishing a clean start (i.e. mrpg -

r startup). The other method is modifying the parameters while the ORPG is running using the hci.  

 

Editing Adaptation Data Parameters at the HCI  
 

To modify the parameters, first launch the control interface by executing hci on the command line. The 

ORPG must be running for the HCI to launch. The main window looks like:  

 



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 158 of 202 

 
 

Click on the Products button inside the RPG component box in the center of the screen. The products 

dialog window is displayed.  

 



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 159 of 202 

 

To edit the algorithm specific adaptation data, click on the 

Algorithms button in the products dialog window. 

 

 

The Algorithms dialog window is displayed.  

 

 
 

Use the Adaptation Item pop-up menu to select which block (or named object) to be displayed.  

 

With the current CODE distribution, the Algorithms dialog window is 

unlocked at all times. No password is required.  

 

 
 



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 160 of 202 

After making desired changes, the changes can be applied by clicking on Save and confirming the 

change. NOTE: the Save button will be grayed out until at least one change has been made and either 

the Return/Enter key pressed or the cursor moved to another data field.  

 

Depending on the algorithm configuration, the new parameters will be applied immediately, or at the 

beginning of the next elevation or volume.   

 

 



Vol 2 Doc 4 Section II - Algorithm Adaptation Data                                                     

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 161 of 202 

 

Part D. Algorithm API Support  
 

This is a very brief overview of how adaptation data is used by algorithms. See CODE Guide Volume 3 

for additional information.  

 

Reading Adaptation Data from the Database  
 

With the previous adaptation data mechanism, a C structure was automatically populated with all of the 

algorithm's adaptation data fields. With the new DEA mechanism, each data field (data element) must be 

read individually from the database. The algorithm API provides two helper functions to read adaptation 

data.   

 RPGC_ade_get_values is used to read all integer and floating point data. This function is also 

used for enumerated types.  

 RPGC_ade_get_string_values is used to read all string data.   

 

Typically an adaptation data "access function" using these calls is written as part of the algorithm.  

 

Using the DEA Callback Feature  
 

With the previous adaptation data mechanism, the adaptation data had to be registered. With the new 

DEA mechanism, registration of the adaptation data is optional because the "DEA access function" can 

be implemented as part of the algorithm and be called from within the algorithm. Though not required, 

most adaptation data "access functions" in existing algorithms have been registered as callbacks. If an 

access function is registered as a callback, the function must have a single parameter which is the 

address of the data structure containing fields representing the individual data elements. The access 

function updates the fields in this structure.  

 RPGC_reg_ade_callback registers the adaptation data "DEA access function" so that it is 

automatically called at a specified interval. This provides a slight resource savings since the data 

are only read from the database if updated (modified).  

Sharing Adaptation Data  
 

Algorithm adaptation data is stored in an ORPG database and is available to any algorithm knowing the 

full ID of the data element (including the algorithm group name). Though not required, the ROC has 

included these access functions as part of libadaptstruct for C algorithms and libadaptcomblk for 

Fortran algorithms. This facilitates sharing of data by making the access function easily available to all 

algorithms.  

 

Modification of these libraries is not recommended for development activity that is not directly involved 

with the ROC in integrating new algorithms into the operational ORPG. If modifying an existing 

algorithm having a data access function already integrated into the shared library, an alternative to 

modifying the original access function is to develop a new access function that reads the new adaptation 

data elements.  



Vol 2 Doc 4 Section III - Other Data Inputs                                                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 162 of 202 

Vol 2. Document 4 - 

Additional Information & Guidance for WSR-88D Algorithm 

Developers  

Section  III  Other Data Inputs  

 

 

Build 11 NOTES: 

 

 Scan Summary table structure was modified to include new data fields containing the 

number of elevations processed by the RDA (which could be less than the number of 

cuts defined in the VCP).  This means that any algorithm producing volume data from 

either elevation data or radial data must always determine when the volume ends. 

 

 

 

 

Part A. Introduction  
 

In addition to base data from the radar and algorithm specific adaptation data, algorithms can use 

intermediate product data produced by other algorithms, external data obtained from other systems, and 

miscellaneous configuration / status data.  

 

 

 



Vol 2 Doc 4 Section III - Other Data Inputs                                                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 163 of 202 

 

Part B. Intermediate Product Data  
 

Intermediate product data is product data related to the radar base data flow, is typically produced every 

elevation or every volume (configured as elevation data or volume data), and is not distributed to 

external users. Intermediate products are used to split up algorithm logic into more that one task and to 

provide a source of intermediate data that can be used by multiple algorithm tasks.  

 

One limitation, except for the requested elevation, only the final product can be customized by the 6 

request parameters in the product request message.  These parameters are not passed on to tasks 

upstream producing intermediate products. 

 

No formal guidance exists for the content / structure of intermediate product data. A review of existing 

intermediate products may turn up similarities or patterns of use, but this review has not been 

accomplished. For example, some final products that are in rectangular coordinates, "raster products", 

have the algorithm science accomplished while the data is still in polar coordinates with the results 

stored in intermediate products.  

 

 

 



Vol 2 Doc 4 Section III - Other Data Inputs                                                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 164 of 202 

 

Part C. External Data  
 

External data is non-product data obtained from external sources. Currently there is only one example of 

external data in the ORPG. That is environmental data from the RUC model that is received from 

AWIPS.  

 

The external data message has a defined structure. It contains an optional message header, an external 

data structure and data packet 29 which includes serialized external data. The header structure of data 

packet 29 is similar to data packet 28 used in final products.  

 

      Contents  Halfword (2 bytes)  

   

   

External 
Data 
Message 
Header  

   

   

 

Packet 29 
Header  

   

Packet 29 
Data  

 

Product Message Header  
 (Optional)  

DIVIDER (-1)  

BLOCK ID ( )  

SPARE  

COMPRESSION TYPE  

DECOMPRESSED SIZE (MSW)  

DECOMPRESSED SIZE (LSW)  

Packet Code = 29  

NOT USED (for alignment)  

Number of Bytes (MSW)  

Number of Bytes (LSW)  

Serialized Generic External Data 
RPGP_ext_data_t  

 

9 shorts  

 1  

 2  

 3  

 4  

 5  

 6  

 7  

 8  

 9  

10  

   

 

 

 

The structure External_data_msg_hdr defined in product.h can be used to access the external data 

message header. The first field in External_data_msg_hdr is a short divider = -1 which can be used 

to detect the absence of the optional product message header (which is not needed). The structure 

packet_29_t defined in packet_29.h can be used to access the packet 29 header.  

 

As with WSR-88D final products, the external data header and packet 29 header portions of the external 

data are transmitted in Big Endian (network) format and short data values must be swapped before 

reading them on a Little Endian platform.  

 

The serialized data must be deserialized using standard API functions and the resulting address cast to 

RPGP_ext_data_t *. The top level structure of the generic data is represented by the C structure 

RPGP_ext_data_t. This structure contains approximately 15 header fields, a pointer to external data 

parameters, and a pointer to external data components. The deserialized data does not need byte-

swapping.  

 



Vol 2 Doc 4 Section III - Other Data Inputs                                                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 165 of 202 

  

typedef struct {        /* product struct */ 

 

    char *name;             /* product name */ 

    char *description;      /* product description (may contain version  

                               info) */ 

    int product_id;         /* product id (code) */ 

    int type;               /* product type (must be RPGP_EXTERNAL) */ 

    unsigned int gen_time;  /* product generation time */ 

     

    short spare[5];   /* fields reserved for future use (must set to 0) */ 

 

    short compress_type;   /* compression type (currently not used and  

                              must set to 0) */ 

    int size_decompressed; /* size after decompressing (currently not  

                              used and must set to 0) */ 

 

    int numof_prod_params;     /* number of specific product parameters */ 

    RPGP_parameter_t *prod_params; /* specific product parameter list */ 

                                           

    int numof_components;       /* number of components or events */ 

    void **components;   /* component or event list. See Note 0. */ 

     

} RPGP_ext_data_t; 

            

 

Each external data parameter and component parameter is represented by the C structure 

RPGP_parameter_t. A description of generic parameters is beyond the scope of this introduction.  

 

An introduction to the generic components is provided in Volume 2 Document 3 Section III - Generic 

Product Components.  

 

The algorithm API contains some debug print functions that can be used to provide a text output of the 

contents of the product. The algorithm API also contains helper functions to fill out the product header 

fields, fill the contents of the parameter structures, and to serialize / deserialize the product. No support 

is provided for construction of the components themselves.  

 

 

 



Vol 2 Doc 4 Section III - Other Data Inputs                                                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 166 of 202 

 

Part D. Miscellaneous Configuration / Status Data  
 

There are several internal data tables containing information about the current volume scan / radar base 

data being ingested.  Much of the information is available via specific API functions and the base data 

header. Therefore most algorithms have no need to access these tables. Only those tables that can be 

accessed via the algorithm API are covered here.  For API support see CODE Guide Volume 3, 

Document 2, Section II. 

 

Scan Summary Information  
 

The scan summary table (obtained by RPGC_get_scan_summary) makes additional information available 

to the algorithm. Most of this information is available via other means. Information includes: volume 

start date/time, wx mode, vcp number, and the spot blanking bitmap.  The fields for the last elevation 

number were added in Build 11 and are the preferred over the contents of the VCP information structure.  

The Scan_summary structure is defined in orpgsum.h. 

 
typedef struct { 

 

   int volume_start_date;   /* Modified Julian start date */ 

 

   int volume_start_time;   /* From midnight, in seconds */ 

 

   int weather_mode;        /* 2 = convective, 1 = clear air */ 

 

   int vcp_number;          /* Pattern number: 

                               Maintenance/Test: > 255 

                               Operational: <= 255 

                               Constant Elevation Types: 1 - 99 */ 

 

   short rpg_elev_cuts;     /* Number of RPG elevation cuts in VCP */ 

 

   short rda_elev_cuts;     /* Number of RDA elevation cuts in VCP */ 

 

   int spot_blank_status;   /* Bitmap indicating whether elevation 

                   cut has spot blanking enabled */ 

 

   unsigned char super_res[ECUT_UNIQ_MAX];   

                /* Bitmap indicating whether elevation 

                   cut is Super Resolution.   Each byte  

                   corresponds to an RPG elevation cut.  

                   Bits are defined in vcp.h */ 

 

   unsigned char last_rda_cut;  /* Cut number of last RDA elevation number in VCP.   

                                   This could be different from VCP definition if 

                                   AVSET is active.  A value of 0xff indicates  

                                   undefined. */ 

 

   unsigned char last_rpg_cut;  /* Cut number of last RPG elevation number in VCP. 

                                   This could be different from VCP definition if 

                                   AVSET is active.  A value of 0xff indicates 

                                   undefined. */ 

} Scan_Summary; 

 



Vol 2 Doc 4 Section III - Other Data Inputs                                                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 167 of 202 

The field last_rpg_cut should be used instead of rpg_elev_cuts because in the future RDA the 

processing of elevations may be terminated before reaching the last elevation defined in a VCP.   

The function RPGC_is_buffer_from_last_elev (which uses the new field last_rpg_cut) should 

be used to determine the current elevation is the last elevation in the volume scan. 
 

Volume Status Message 
 

The volume status message (obtained by RPGC_read_volume_status) is the primary method of 

obtaining the volume number and the volume time if not registered for input product data.  Some of the 

additional information is also available elsewhere.  Information includes: volume number, volume 

sequence number, volume date-time, vcp number, weather mode, number of elevation cuts and each 

elevation angle.  The Vol_stat_gsm_t structure is defined in gen_stat_msg.h. 

 
typedef struct volume_status { 

 

   unsigned long volume_number;   /* Current volume scan sequence  number.  

                                     Monotonically increases. Initial value 0. */ 

 

   unsigned long cv_time;         /* Current volume scan time in milliseconds  

                                     past midnight. */ 

 

   int cv_julian_date;            /* Current volume scan Julian date */ 

 

   int initial_vol;               /* Flag, if set, indicates the volume is the  

                                     initial volume.  It is assumed for an  

                                     initial volume, no radar data-derived  

                                     products will be available. */  

 

   int pv_status;                 /* Previous volume scan status: 

                                     1 - completed successfully,  0 - aborted. */ 

 

   int expected_vol_dur;          /* Expected volume scan duration, in seconds. */ 

 

   int volume_scan;               /* The volume scan number [0, 80]. */ 

 

   int mode_operation;            /* Mode of operation: 0 - Maintenance Mode  

                                     1 - Clear Air Mode  2 - Precipitation Mode */ 

 

   int vol_cov_patt;              /* Volume coverage pattern */ 

 

   int rpgvcpid;                  /* slot in vcp_table containing VCP data  

                                     associated with vol_cov_patt. */ 

 

   int num_elev_cuts;             /* Number of elevations in VCP. */ 

 

   short elevations[MAX_CUTS];    /* Elevation angles (deg*10). */ 

    

   short elev_index[MAX_CUTS];    /* RPG elev index associated with each  

                                     elevation angle. */ 

    

   int super_res_cuts;           /* Bit map indicating which RPG cuts are  

                                     expected to have super res data. */ 

 

   Vcp_struct current_vcp_table;  /* The current VCP data. */ 

          

} Vol_stat_gsm_t; 



Vol 2 Doc 4 Section III - Other Data Inputs                                                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 168 of 202 

 

 

VCP Information 
 

RPGCS_get_vcp_data returns the structure containing VCP information. This includes: vcp number, 

number of elevations (rda), clutter map number, pulse width (long/short), velocity resolution, pulse 

width, sample resolution, reflectivity range resolution, velocity & spectrum width range resolution, and 

radial angular interval.  The Vcp_struct structure is defined in vcp.h. 

 
typedef struct { 

 

    short msg_size;     /* number of half words; 23 - 594 depending 

                           on type; PFNHW=1 */ 

    short type;         /* pattern type: PFPATTYP=2  

                           Constant elevation cut: 2 

                           Horizontal raster scan: 4 

                           Vertical raster scan:   8 

                           Searchlight:        16 */ 

    short vcp_num;      /* pattern number: PFPATNUM=3  

                           Maintenance/Test: > 255 

                           Operational: <= 255 

                           Constant Elevation types:   1 -  99 

                           Horizontal Raster types:  100 - 149 

                           Vertical Raster types:    150 - 199 

                           Searchlight types:        200 - 249  */ 

 

    /* the following fields are good for Constant elevation cut type */ 

 

    short n_ele;        /* number of elevations are scanned in this 

                           volume (including repeated elev); 1-25. */ 

 

    short clutter_map_num;  /* clutter map group number; 1 - 99. */ 

 

    unsigned char vel_resolution; /* velocity resolution;  

                                   0.5 meters/second: 2    1.0 meters/second: 4 */ 

 

    unsigned char pulse_width;  /* pulse width;   short: 2  long: 4  */ 

 

/* Note the following items are actually spare fields. */ 

    short sample_resolution;    /* sampling range resolution; 

                                   250 meters: 0  50 meters:  1  */ 

    short spare1;  

    short spare2;  

    short spare3;  

    short spare4; 

 

/* Because Ele_attr has a size of 23 shorts, which is not aligned, we use the  

   following array to reserve the space for Ele_attr.  When we use this we cast  

   to the struct ele_attr = (Ele_attr *)(vcp.vcp_ele[ele_num])       */ 

 

    short vcp_ele [VCP_MAXN_CUTS][ELE_ATTR_SIZE]; /* specify the cuts */ 

 

} Vcp_struct; 

 

 

 



Volume 2 Appendices                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 169 of 202 

 

Volume 2.  ORPG Application Software 

Development Guide  

 

Appendices  

 

Appendix A. Site Data Listing 
 

Appendix B. Encoding Data into Unsigned Integers 

 

Appendix C. Data Level Threshold Values in Existing Products 

 

Appendix D. Base Data Header Field Definitions 

 

Appendix E. The Generic Moment Structure 

 

Appendix F.  Software Removed for the Public Edition 
 

Appendix G.  Quick Reference for Starting the ORPG  

                        
 

 



Vol 2 Appendix A - Site Data Listing                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 170 of 202 

Volume 2. Appendices 

 

Appendix A. Site Data Listing 

 

 ICAO Latitude Longitude Height RPG ID   Name 

        

CONUS Operational WSR-88D 

 kabr 45456 -98413 1383 309   ABERDEEN 

 kabx 35150 -106824 5951 311   ALBUQUERQUE 

 kakq 36984 -77008 209 516   NORFOLK 

 kama 35233 -101709 3703 313   AMARILLO 

 kamx 25611 -80413 111 728   MIAMI 

 kapx 44906 -84720 1561 312   NCL MICHIGAN 

 karx 43823 -91191 1357 389   LA CROSSE 

 katx 48195 -122494 607 542   SEATTLE 

 kbbx 39496 -121632 221 380   BEALE AFB 

 kbgm 42201 -75985 1703 319   BINGHAMTON 

 kbhx 40499 -124291 2516 359   EUREKA  (BUNKER HILL) 

 kbis 46711 -100760 1755 321   BISMARCK 

 kblx 45854 -108607 3703 318   BILLINGS 

 kbmx 33172 -86770 759 320   BIRMINGHAM 

 kbox 41956 -71138 231 323   BOSTON 

 kbro 25916 -97419 87 324   BROWNSVILLE 

 kbuf 42949 -78737 790 325   BUFFALO 

 kbyx 24597 -81703 89 386   KEY WEST 

 kcae 33949 -81119 344 341   COLUMBIA 

 kcbw 46039 -67807 859 329   CARIBOU 

 kcbx 43490 -116236 3171 322   BOISE 

 kccx 40923 -78004 2486 374   STATE COLLEGE 

 kcle 41413 -81860 860 340   CLEVELAND 

 kclx 32655 -81042 228 333   CHARLESTON SC 

 kcrp 27784 -97511 142 343   CORPUS CHRISTI 

 kcxx 44511 -73166 431 326   BURLINGTON 

 kcys 41152 -104806 6192 335   CHEYENNE 

 kdax 38501 -121677 144 536   SACRAMENTO 

 kddc 37761 -99969 2671 350   DODGE CITY 

 kdfx 29273 -100280 1196 394   LAUGHLIN AFB 

 kdgx 32280 -89984 609 855   BRANDON 

 kdix 39947 -74411 230 523   PHILADELPHIA 

 kdlh 46837 -92210 1542 352   DULUTH 

 kdmx 41731 -93723 1058 348   DES MOINES 

 kdox 38826 -75440 163 351   DOVER AFB 

 kdtx 42700 -83472 1216 349   DETROIT 



Vol 2 Appendix A - Site Data Listing                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 171 of 202 

 kdvn 41612 -90581 851 530   QUAD CITIES 

 kdyx 32538 -99254 1581 353   DYESS AFB 

 keax 38810 -94264 1098 385   PLEASANT HILL 

 kemx 31894 -110630 5319 556   TUCSON 

 kenx 42586 -74064 1907 310   ALBANY 

 keox 31460 -85459 537 362   FT RUCKER 

 kepz 31873 -106698 4218 357   EL PASO 

 kesx 35701 -114891 4948 566   LAS VEGAS 

 kevx 30565 -85922 222 307   EGLIN AFB 

 kewx 29704 -98029 766 539   AUSTIN/SAN ANTONIO 

 keyx 35098 -117561 2873 511   EDWARDS AFB 

 kfcx 37024 -80274 2965 534   ROANOKE 

 kfdr 34362 -98977 1311 305   ALTUS AFB 

 kfdx 34634 -103619 4698 328   CANNON AFB 

 kffc 33363 -84566 972 316   ATLANTA 

 kfsd 43588 -96729 1495 544   SIOUX FALLS 

 kfsx 34574 -111197 7514 361   FLAGSTAFF (RPG) 

 kftg 39786 -104546 5610 347   DENVER 

 kfws 32573 -97303 764 345   DALLAS/FT WORTH 

 kggw 48206 -106625 2384 365   GLASGOW 

 kgjx 39062 -108214 10100 368   GRAND JUNCTION (RPG) 

 kgld 39367 -101700 3717 366   GOODLAND 

 kgrb 44499 -88111 806 371   GREEN BAY 

 kgrk 30722 -97383 602 332   FT HOOD 

 kgrr 42894 -85545 875 369   GRAND RAPIDS 

 kgsp 34883 -82220 1068 555   GREER 

 kgwx 33897 -88329 589 342   COLUMBUS AFB 

 kgyx 43891 -70257 473 528   PORTLAND ME 

 khdx 33077 -106120 4270 376   HOLLOMAN AFB 

 khgx 29472 -95079 115 378   HOUSTON 

 khnx 36314 -119631 340 363   SAN JOAQUIN VALY 

 khpx 36737 -87285 624 364   FT CAMPBELL 

 khtx 34931 -86084 1859 826   NORTHEAST ALABAMA 

 kict 37654 -97443 1403 562   WICHITA 

 kicx 37591 -112862 10756 330   CEDAR CITY (RPG) 

 kiln 39420 -83822 1170 338   CINCINNATI 

 kilx 40150 -89337 730 549   LINCOLN 

 kind 39708 -86280 887 381   INDIANAPOLIS 

 kinx 36175 -95564 749 557   TULSA 

 kiwa 33289 -111670 1426 524   PHOENIX 

 kiwx 41359 -85700 1055 827   NORTHERN INDIANA 

 kjan 32318 -90080 322 382   JACKSON MS 

 kjax 30485 -81702 159 383   JACKSONVILLE 

 kjgx 32675 -83351 618 535   ROBINS AFB 

 kjkl 37591 -83313 1461 373   JACKSON KY 

 klbb 33654 -101814 3340 398   LUBBOCK 



Vol 2 Appendix A - Site Data Listing                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 172 of 202 

 klch 30125 -93216 136 391   LAKE CHARLES 

 klix 30337 -89825 179 545   SLIDELL 

 klnx 41958 -100576 3067 517   NORTH PLATTE 

 klot 41604 -88085 760 337   CHICAGO 

 klrx 40740 -116803 6895 564   ELKO (RPG) 

 klsx 38699 -90683 721 308   ST LOUIS 

 kltx 33989 -78429 145 563   WILMINGTON 

 klvx 37975 -85944 833 397   LOUISVILLE 

 klwx 38975 -77478 369 303   STERLING 

 klzk 34836 -92262 649 395   LITTLE ROCK 

 kmaf 31943 -102189 2961 518   MIDLAND/ODESSA 

 kmax 42081 -122716 7553 500   MEDFORD (RPG) 

 kmbx 48393 -100864 1590 507   MINOT AFB 

 kmhx 34776 -76876 144 375   MOREHEAD CITY 

 kmkx 42968 -88551 1022 504   MILWAUKEE 

 kmlb 28113 -80654 116 302   MELBOURNE 

 kmob 30679 -88240 289 509   MOBILE 

 kmpx 44849 -93565 1101 506   MINNEAPOLIS 

 kmqt 46531 -87548 1525 399   MARQUETTE 

 kmrx 36168 -83402 1434 387   KNOXVILLE 

 kmsx 47041 -113986 7978 508   MISSOULA (RPG) 

 kmtx 41263 -112448 6593 537   SALT LAKE CITY  (RPG) 

 kmux 37155 -121897 3550 541   SAN FRANCISCO 

 kmvx 47528 -97325 1080 360   FARGO/GRAND FORKS 

 kmxx 32537 -85790 560 354   MAXWELL AFB 

 knkx 32919 -117041 1052 540   SAN DIEGO 

 knqa 35345 -89873 435 501   MEMPHIS 

 koax 41320 -96366 1260 519   OMAHA 

 kohx 36247 -86563 676 512   NASHVILLE 

 kokx 40866 -72864 198 515   BROOKHAVEN 

 kotx 47681 -117626 2449 547   SPOKANE 

 kpah 37068 -88772 505 521   PADUCAH 

 kpbz 40531 -80218 1266 526   PITTSBURGH 

 kpdt 45691 -118852 1580 522   PENDLETON 

 kpoe 31155 -92976 472 339   FT POLK 

 kpux 38460 -104181 5363 529   PUEBLO 

 krax 35665 -78490 461 531   RALEIGH/DURHAM 

 krgx 39754 -119461 8396 533   RENO (RPG) 

 kriw 43066 -108477 5633 392   RIVERTON/LANDER 

 krlx 38311 -81723 1212 334   CHARLESTON WV 

 krtx 45715 -122964 1686 527   PORTLAND OR 

 ksfx 43106 -112686 4539 546   POCATELLO 

 ksgf 37235 -93400 1375 548   SPRINGFIELD 

 kshv 32451 -93841 386 543   SHREVEPORT 

 ksjt 31371 -100492 2004 538   SAN ANGELO 

 ksox 33818 -117636 3106 574   SANTA ANA MTS 



Vol 2 Appendix A - Site Data Listing                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 173 of 202 

 ksrx 35291 -94362 721 825   WESTERN ARKANSAS 

 ktbw 27705 -82402 122 552   TAMPA 

 ktfx 47460 -111385 3804 370   GREAT FALLS 

 ktlh 30398 -84329 176 551   TALLAHASSEE 

 ktlx 35333 -97278 1277 1   NORMAN 

 ktwx 38997 -96232 1415 554   TOPEKA 

 ktyx 43756 -75680 1960 850   FT DRUM 

 kudx 44125 -102830 3194 532   RAPID CITY 

 kuex 40321 -98442 2057 367   GRAND ISLAND 

 kvax 30890 -83002 330 510   MOODY AFB 

 kvbx 34839 -120398 1354 559   VANDENBERG AFB 

 kvnx 36741 -98128 1258 558   VANCE AFB 

 kvtx 34412 -119179 2807 396   LOS ANGELES 

 kyux 32495 -114656 239 393   YUMA  (RPG) 

               

Overseas Operational WSR-88D 

 pgua 13456 144811 386 314   ANDERSEN AFB 

 tjua 18116 -66078 2958 502   SAN JUAN FAA (RPG 1) 

 lpla 38730 -27321 3415 390   LAJES AB 

 pabc 60793 -161874 304 304   BETHEL FAA (RPG 1) 

 pacg 56853 -135528 272 553   SITKA FAA (RPG 1) 

 paec 64512 -165293 90 346   NOME FAA (RPG 1) 

 pahg 60726 -151349 356 344   ANCHORAGE FAA (RPG 1) 

 paih 59462 -146301 132 505   MIDDLETON ISLAND (RPG 1) 

 pakc 58680 -156627 144 568   KING SALMON FAA (RPG 1) 

 papd 65036 -147499 2707 525   FAIRBANKS FAA (RPG 1) 

 phki 21894 -159552 340 550   SOUTH KAUAI FAA (RPG 1) 

 phkm 20125 -155778 3965 377   KAMUELA/KOHALA APT(RPG 1) 

 phmo 21133 -157180 1444 336   MOLOKAI FAA (RPG 1) 

 phwa 19095 -155569 1461 570   SOUTH SHORE FAA (RPG 1) 

 rkjk 35921 126625 191 388   KUNSAN AB 

 rksg 36956 127021 133 327   CAMP HUMPHREYS 

 rodn 26302 127910 332 384   KADENA AB 

               

Development and Testing Sites 

 kbix 30524 -88985 62 572   KEESLER AFB OPS TRNG 

 dkm1 30524 -88985 62 575   KEESLER AFB MNTC TRNG A 

 dkm2 30524 -88985 62 573   KEESLER AFB MNTC TRNG B 

 ntc1 38810 -94264 1295 571   TRAINING CENTER #1 NWSTC 

 ntc2 38810 -94264 1295 571   TRAINING CENTER #2 NWSTC 

 nrc3 38810 -94264 1295 0   NRC #3 

 nrc1 38810 -94264 1295 315   NRC #1 

 nrc2 38810 -94264 1295 578   NRC #2 

 nhq1 38975 -77478 1295 0   NWSHQ TESTBED(RPG) 

 npc1 38975 -77478 1295 0   PRC (RDASIM/RPG) 

 drx1 35238 -97460 1314 520   OPEN SYSTEMS (KREX) 



Vol 2 Appendix A - Site Data Listing                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 174 of 202 

 fop1 35238 -97460 1314 520   OSF REDUNDANT (RPG 1) 

 nop3 35238 -97460 1314 520   open rpg 3 

 nop4 35238 -97460 1314 520   roc4 nws 

 nop2 35238 -97460 1314 520   roc nws 

 rop2 35238 -97460 1314 520   roc nws redundant 

 dop1 35238 -97460 1314 520   roc dod 

 rop3 35238 -97460 1314 520   roc3 nws redundant 

 rop4 35238 -97460 1314 520   roc4 nws redundant 

 nwsg 35238 -97460 1314 520   nws generic 

 dodg 35238 -97460 1314 520   dod generic 

 faag 35238 -97460 1314 520   faa generic 

 faab 35238 -97460 1314 520   faa generic with bdds 

 dodb 35238 -97460 1314 520   dod generic with bdds 

               

Other 

 ncdc 35238 -97460 1295 852   NATIONAL CLIMATIC DATA CENTER 

 kvwx 38260 -87724 614 851   EVANSVILLE 

 rcwf 25073 121773 2601 301   TAIWAIN    

        

  



Vol 2 Appendix B - Encoding Data into Unsigned Integers                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 175 of 202 

Volume 2. Appendices 
 

Appendix B. Encoding Data into Unsigned Integers 

 

The Scale-Offset formula  
 

Beginning with Build 10, a new method was published for specifying the linear encoding and decoding 

of real data in unsigned integers contained in basedata messages.  These formulas are NOT applied to 

any value of the scaled integer which represents a flag value (e.g.; "range folded").   They are only 

meaningful for the encoding and decoding of numerical data values. 

 
     encoded_integer = (float_value * SCALE) + OFFSET 

 
     float_value = (encoded_integer - OFFSET) / SCALE 

 

The Scale-Offset formulas can be applied for decoding base data. Currently all basic moment data 

and Dual Polarization data fields reserve data levels 0 and 1 for flag values.  In other words data 

levels 0 and 1 are not used for encoded numerical values.  The API provides a function for 

decoding data. 

 

The Scale-Offset formulas can be applied to product data which use unsigned integers and has data 

encoded in a manner described in this appendix.  This would include traditional data packet 16 as well 

as data elements within the generic radial component.  Data packet 16 contains an array of 8-byte 

integers (unsigned char). Beginning with Build 10, the generic radial component can support 8, 16, and 

32 byte integer types. The maximum range of values in the encoded integer is limited by the type 

(unsigned char, unsigned short, or unsigned int) minus the integer values used for flag values. 

 

  These formulas do not include knowledge of the number of leading / trailing flag values.  So 

 When decoding product data values using the second formula, the user (or decoding system) 

must only apply the formula to the non-flag integer data values.   

 When writing product data values, the product algorithm must set the flag values as needed and 

ensure that only valid meteorological values are encoded into the integer values contained in the 

product using the first formula. 

 

 

 

Recommended Encoding Method for Unsigned Integer Arrays 
 

Data packet 16 contains an array of 8-bit integers (unsigned char). Beginning with Build 10, the generic 

radial component can support 8, 16, and 32 bit integer types. Interpreting digital products depends upon 

a consistent method of encoding data into unsigned integers.  Many of the existing products using data 

packet 16 use an encoding method that is consistent with the encoding of the basic base data moments: 

reflectivity, velocity, and spectrum width.  

 



Vol 2 Appendix B - Encoding Data into Unsigned Integers                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 176 of 202 

Though not required by the ICD for RPG to Class 1 User, the recommended method of representing real 

values in unsigned integer arrays (including data packet 16 and the generic radial component) is as 

follows: 

 

1. The encoding method for products of the same type should be the same. 

 

2. Whether the numerical real values are negative or positive, they are encoded into the integer 

values where the real value increases with the integer value.  This results in the Scale parameter 

having a non-zero positive value. 

 

3. The first (or lowest) integer value used is always 0. 

 

4. The interval between the adjacent encoded numerical values is a constant.  That means the 

encoded real numerical values increase linearly as the integer value increases.  

 

5. Flag values are special purpose data values that are not numerically encoded.  If the data contain 

flag values, they are not intermixed with encoded numerical values. 

 

a. Leading Flags - (if any) are represented by the beginning integer values (0, 1, ...).  Many 

existing products have one or two leading flags. The first numerical value is first integer 

value after the last leading flag. 

 

b. Trailing Flags - (if any) are represented by the integer values immediately after the 

highest numerical value.  Most current products use all available integer data values and 

have no trailing flag values.  A few products use all of the available integer data values 

(in an 8-bit integer) and have one trailing flag represented with the integer value 255. 

 
Not all products use this method of encoding data into an 8-bit integer.  Product ID 134, DVL, 

uses a linear method for part of the data range and a non-linear method for the remainder.  In 

addition the Threshold fields are used in a unique manner (see 'Providing Decoding Parameters 

in the Product' below). 

 
8-bit Example 

 

One example of using the recommended method is product ID 87, DBV. Binary value 0 represents a 

"Below Threshold" flag and binary value 1 represents "Range Folding". Binary 2 represents the 

minimum value of -63.5 meters/second. Binary 255 represents the maximum value of 63 meters/second. 

The real increment between numerical values is 0.5 meters/second. 

 

 

 

Providing Decoding Parameters in the Product 
 

The Product Description Block in the WSR-88D final product contains 16 Threshold Level data fields.  

These threshold fields were originally intended to explicitly define the threshold labels to be displayed 

for the 4-bit run length encoded products which were intended for display on the original display device.  

These 16 threshold fields (halfwords 31 - 46 in the final product message) are also used to provide 

decoding parameters for "digital products" which have real data values encoded into integer data levels. 



Vol 2 Appendix B - Encoding Data into Unsigned Integers                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 177 of 202 

 

 

Threshold Level Fields - The Scale-Offset Parameter Method (Recommended) 
 

The new Scale-Offset formula can be used to encode and decode any product having a linear 

increment between encoded data values.  The following threshold fields are being used by future Dual 

Polarization products 159 (DZD), 161 (DCC), and 163 (DKD) to describe the Scale-Offset coding. 

 

Halfword  Field Use 
HW 31 Threshold 1 the SCALE in IEEE floating point format 

HW 32 Threshold 2 

HW 33 Threshold 3 the OFFSET in IEEE floating point format 

HW 34 Threshold 4 

   

HW 36 Threshold 6 the highest data level having meaning,  including flag values 

HW 37 Threshold 7 the number of leading flag values (can be 0) 

HW 38 Threshold 8 the number of trailing flag values (can be 0) 

 

Unlike the formula provided for the Original Method, the Scale-Offset formulas do not include 

knowledge of the number of leading / trailing flag values because the flag values do not affect the 

numerical coding directly.  So 

 When decoding product data values using the second formula, the user (or decoding system) 

must only apply the formula to the non-flag integer data values.   

 When writing product data values, the product algorithm must set the flag values as needed and 

ensure that only valid meteorological values are encoded into the integer values contained in the 

product using the first formula. 

 

The following formulas can be useful in encoding / decoding and display of a product. 

 

The number of numerical data levels is 
(HW_36_value + 1) - HW_37_value - HW_38_value 

 

The lowest numerical data level is encoded into integer value: 
0 + HW_37_value 

 

The highest numerical data level is encoded into integer value: 
HW_36_value - HW_38_value 

 

The first trailing flag (if it exists) is represented by integer value: 
HW_36_value - HW_38_value + 1 

 

The encoding formula is: 
integer_data_level = (real_value * HW_31_32_value) + HW_33_34_value 

 

The decoding formula is: 
real_value = (integer_data_level - HW_33_34 _value) / HW_31_32_value 

 

 

8-bit Example 



Vol 2 Appendix B - Encoding Data into Unsigned Integers                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 178 of 202 

 

Using the same product as in the 8-bit example, product ID 87 (DBV) data fields would be encoded and 

decoded as follows. 

 

To encode non-flag data values (that is integer values 2 - 255): 

 
     encoded_integer = (float_value * 2.0) + 129.0 

 

To decode the (non-flag) integer values in the product: 

 
     float_value = (encoded_integer - 129.0) / 2.0 

   

where  

SCALE = 2.0 

OFFSET = 129.0 

 

 

Threshold Level Fields - The Original Parameter Method (Not recommended for new 

development) 
 

The Legacy digital products (and many products added since) had a specific, though incomplete, method 

of providing information in the Product Description Block to aid in decoding integer values in data 

packet 16. 

 

Halfword  Field Use 
HW 31 Threshold 1 contains the minimum value (encoded) 

HW 32 Threshold 2 contains the increment (encoded) 

HW 33 Threshold 3 contains the number of data levels 

NOTE: The number of levels field (HW 33) is not used in a consistent fashion.  Sometimes it is the 

maximum data level and sometimes the number of levels. 

 

The information provided in the three parameters is not sufficient to decode the product. 

 

a. Since the minimum value and the increment are stored on a 2-byte integer, an unstated 

scaling factor has to be applied to shift the decimal point and convert to real numbers.  Some 

products had different scaling factors for the minimum value and increment. NOTE:  This 

'scaling factor' is not the same as the SCALE in the Scale-Offset formula. 

 

b. There is no parameter specified for how many data levels are flag values. The decoding 

formula using minimum value, increment, and scale factors is not applied to flag values. 

 

The Class 1 ICD does not provide an encoding or decoding function for the original parameter method. 

For product following the four encoding guidelines stated above: 

 

To obtain the encoded integer value from the real floating point value: 

 
data_level = num_flags +  

    [real_value - (HW_31_value/min_val_scale)] * (incr_scale/HW_32_value) 

 



Vol 2 Appendix B - Encoding Data into Unsigned Integers                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 179 of 202 

To obtain the decoded floating point value from the encoded integer value: 

 
real_value = (HW_31_value/min_val_scale) +  

                [(data_level - num_flags) * (HW_32_value/incr_scale)] 

 

where: 

HW_31_value is the contents of HW 31 (encoded minimum value) 

HW_32_value is the contents of HW 32 (encoded increment) 

min_val_scale is the scaling factor used to convert the min value into a real number  

incr_scale is the scaling factor used to convert the increment into a real number 

num_flags is the number of leading value flags (beginning at data level 0) 

 

The scaling factors are typically 10, 100, or 1000 which move the decimal point to the left to convert the 

integer data value into a real value.  NOTE:  This 'scaling factor' is not the same as the SCALE in the 

scale-offset formula. 

 

One aspect of this coding may not be universally understood or consistently applied.  With leading 

flag values, which integer data level does the encoded minimum value in HW 31 correspond to?  

For base data arrays in the radial base data messages, in the packet 16 arrays in the 8-bit base data 

products, and in the ITWSDBV product, the minimum value corresponds to the first non-flag data 

level.  It should be noted that, for some products at least, AWIPS incorrectly applies the minimum 

value to data level 0.  This has gone unnoticed because of the small size of the error. 

 

8-bit Example 

 
For product ID 87 (DBV), or ITWSDBV product,  

 

 Threshold 1 contains -635, for the minimum value (HW_31_value) 

 Threshold 2 contains +5, for the interval (HW_32_value) 

 Threshold 3 contains 256, for the number of levels (HW_33_value) 

 

Additional information is required to decode this product. 

 

 min_val_scale = 10 (which converts the minimum value to -63.5) 

 incr_scale = 10 (which converts the increment value to 0.5) 

 num_flags = 2 (which associates the minimum value with data level 2) 

 

Using the decoding formula, integer data level 2 decodes to -63.5 and data level 3 decodes to -63.0. 

 

Issue 1 
The biggest issue is that even though the ICD for RPG to Class 1 User describes how existing 

products use the Threshold fields in the Product Description Block, no formal guidance for 

future use has been developed. 

 

Issue 2 

The ICD for RPG to Class 1 User does not explicitly state how the minimum value in 

Threshold 1 is applied.  

 



Vol 2 Appendix B - Encoding Data into Unsigned Integers                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 180 of 202 

Issue 3  

The description for the use of Threshold 3 in the ICD for RPG to Class 1 User is inconsistent, 

or at least not clear.  The ICD states this value should have a range of 0-255 but that the meaning 

of the value is 'the number of data levels', which could be 256. This may be related to existing 

products not using this header field in the same manner.  

 

Issue 4 

Not all products use this method of encoding data into an 8-bit integer.  For example, product ID 

134, DVL, uses a linear method for part of the data range and a non-linear method for the 

remainder.  In addition the Threshold fields are used in a unique manner. 

 

 

Because the information in Threshold 1 - Threshold 3 is incomplete, the CODE product 

display tool CODEview Graphics (CVG) does not currently use the Threshold fields in the 

product header.  CVG configuration files for each digital product are used to provide all information 

required.  

 

16-bit Example 

 

 
TBD IN A FUTURE EDITION OF CODE 
 
 

As with the 8-bit data scaled integer arrays, the CODE product display tool CODEview Graphics (CVG) 

does not actually use the Threshold fields in the product header. CVG configuration files for each 

digital product are used to provide all information required.  

 

 

Threshold Level Fields - Additional Parameter Methods  
 

In addition to product 134 (DVL) which uses a unique partially non-linear method, other products do not 

follow either the Original Method or the Scale-Offset method.  Most of the proposed Dual Pol products 

are being modified to use the scale-offset parameter method.  .Several that do not follow either the 

Original Method or the Scale-Offset method are: 

 

Products 156 (EDR) and 157 (EDC) 
 

These products include the Scale, Offset, the number of levels, and number of leading flag values but do 

not encode them in the thresholds following the recommended method, which was defined after these 

products were developed. 

 

Future Products 165 (DHC) and 163 (HHC) 

 

These products use the concept of an enumerated type with a table defining the enumeration. 

 

 

 

 



Vol 2 Appendix B - Encoding Data into Unsigned Integers                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 181 of 202 

 

 

CVG use of Threshold Level Fields  
 

For products using the Legacy 'original method', the information in Threshold 1 - Threshold 3 is 

incomplete, the CODE product display tool CODEview Graphics (CVG) does not actually use the 

Threshold fields in the product header.  CVG configuration files for each digital product are used to 

provide all information required. Currently CVG can use the 7 factors in the 'original method' (contained 

in CVG product display configuration files) for decoding the data values into the legend threshold labels 

in for 'Method 1' of legend configuration.   

 

Beginning with Build 12, for those products using Method 5 for display configuration, and having 

the Scale-Offset parameters in the product description block, CVG can use the contents of the 

threshold fields to decode the data levels for information display in for calculating legend 

threshold levels.  This permits the legend labels to be calculated dynamically as the increment in certain 

products changes (e.g., DSP). 

 

For those products not using the Scale-Offset parameters in the product description block, parameters 

in legend configuration files will be used to decode the data levels and explicitly state static threshold 

labels.   

 

NOTE: The dynamic change in legend threshold labels will NOT be provided for products like DSP 

if they are not modified to provide the Scale Offset parameters in the product description block.  

 

Decoding will not be provided for any product that cannot be described with Scale Offset 

parameters. This includes products that do not have a linear encoding like DVIL. Both the 

recommended Method 5 and the original Method 2 will provide the capability to explicitly state 

threshold labels for products like DVIL that do not have a linear encoding. 
 

. 

 

CVT use of Threshold Level Fields  
 

Beginning with Build 12,  

 for those products having the Scale-Offset parameters in the product description block, 

CODEview Text (CVT) can use the contents of the threshold fields to decode the data levels 

for information display.  This permits the legend labels to be calculated dynamically as the 

increment in certain products changes (e.g., DSP). 

 CVT can also decode any scaled offset-product whose encoding can be described using 

Scale-Offset parameters in a configuration file. 

 

Decoding will not be provided for any product that cannot be described with Scale Offset 

parameters. This includes products that do not have a linear encoding like DVIL. Both the 

recommended Method 5 and the original Method 2 will provide the capability to explicitly state 

threshold labels for products like DVIL that do not have a linear encoding. 



Vol 2 Appendix C - Data Level Threshold Values in Existing Products                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 182 of 202 

Volume 2. Appendices 

 

Appendix C. Data Level Threshold Values in Existing Products 

 

 
========================================================================= 

The use of the data level thresholds, which are contained in halfwords 31 - 46 in the Product Description 

Block (PDB), are documented in the Interface Control Document (ICD) for the RPG to Class 1 User, 

Document Number 2620001.  The following text is taken from Note 1 following Figure 3-6 Graphic 

Product Message (Sheet 6). 

 

Figure 3-6. Graphic Product Message (Sheet 6)  
 
Note 1.  The Data Level threshold values used to define the color table of products, described in Table III, 

consist of up to 16 Data Levels.  The exceptions to this are products 32, 81, 93, 94, 99, 138, 153, 154, and 155 

that may have up to a maximum of 255 equally spaced data levels. Additionally, product 134 (High 

Resolution VIL) can provide 255 data levels not necessarily with equal spacing.  Also, product 135 (High 

Resolution Enhanced Echo Tops) can provide up to 199 data levels due to using the most significant bit as a 

“topped” flag.  

 
For products 32, 94, and 153, data level codes 0 and 1 correspond to "Below Threshold" and "Missing", 

respectively.  Data level codes 2 through 255 denote data values starting from the minimum data value in 

even data increments.  The threshold level fields are used to describe the 256 levels as follows:  

 
halfword 31 contains the minimum data value in dBZ * 10  

halfword 32 contains the increment in dBZ * 10.  

halfword 33 contains the number of levels (0 - 255)   

 

For product 81, data level codes 0 will correspond to no accumulation and data level code 255 will 

represent data outside the coverage area.  Data level codes 1 through 254 denote data values starting from 

the minimum data value in even data increments.  The threshold level fields are used to describe the 256 

levels for product 81 as follows:  

 

halfword 31 contains the minimum data value in dBA*10  

halfword 32 contains the increment in dBA * 1000.  

halfword 33 contains the number of levels (0 - 255)  

 

For products 93, 99, 154, and 155, data level codes 0 and 1 correspond to "Below Threshold" and "Range 

Folded", respectively.  For products 93, 99, and 154, data levels 2 through 255 denote data values starting 

from the minimum data value in even data increments.  For product 155, data levels 129 through 149 denote 

data values starting from the minimum data value in even data increments.  The threshold level fields are 

used to describe (up to) 256 levels as follows:  

 

halfword 31 contains the minimum data value in m/s*10  

halfword 32 contains the increment in m/s*10  

halfword 33 contains the number of levels (0 - 255)  

 

For product 134, data level codes 0 and 1 correspond to “Below threshold” and “flagged data”, respectively.  

Data level 255 is reserved for future use.  Data levels 2 through 254 relate to VIL in physical units (kg m-2) 

via either a linear or log relationship.  Any value of VIL above 80 kg m-2 is set to a data value of 254.  The 



Vol 2 Appendix C - Data Level Threshold Values in Existing Products                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 183 of 202 

coefficients used in the equations to relate the data values to VIL are float values.  The IEEE standard for 

32-bit floating point arithmetic (ANSI/IEEE Standard 7541985) has been adopted and modified to utilize the 

16-bit (2 byte short) half words available here to describe the coefficients.  Half words 31, 32, 33, 34, and 35 

are used for this purpose as follows:  

 

halfword 31 contains the linear scale encoded hex value of 0x5BB4 (short int 23476)  

halfword 32 contains the linear offset encoded hex value of 0xC82A (short int -14294)  

halfword 33 contains the digital log start value of 20 

halfword 34 contains the log scale encoded hex value of 0x54DC (short int 21724)  

halfword 35 contains the log offset encoded hex value of 0x593E (short int 22846) 

  

 
For Build 9 and beyond, the linear scaling for HRVIL has been modified to provide improved depiction for 

weak weather signatures.  Thus, halfwords 31 and 32 are redefined as follows:  

 
halfword 31 contains the linear scale encoded hex value of 0x59AB (short int 22955)  

halfword 32 contains the linear offset encoded hex value of 0x4400 (short int 17408)  

 

The halfword hex values must be decoded to use the equations to convert a digital data value to VIL.   

For digital values below the value of halfword 33, the linear equation is used:  

 

Digital data value = decoded halfword 31*VIL + decoded halfword 32  

 

For digital data values equal to or greater than the value of halfword 33, the log equation is used: 

  

Digital data value = decoded halfword 34*LN(VIL) + decoded halfword 35 

 

To decode the hex values, a two stage process based on the following methodology is used. 

The 32-bit IEEE standard for floating point arithmetic has been modified for a 16 bit short as:  

 

 
 

The top row of the above table describes the designation as S for the one sign bit, E for the 5  exponent bits, 

and F for the ten fraction bits.  The middle row notes the bit number starting with the MSB of 0.  The 

bottom row relates 4 bit sequences to half byte sections.  

 

First, convert the halfword hex value to its binary equivalent.  Then, using the S, E, and F bit designations 

in the above table, build the decimal coefficient values using the guide below:  

 

For E = 0, coefficient value = (-1)
S
 * 2 * (0 + (F/2

10
)),  

and for 0 < E < 255;  

coefficient value = (-1)
S
 * 2

E-16 
* (1 + (F/2

10
))  

 

For example, a coefficient value of (Hex) 5BB4, (bit sequence 0101 1011 1011 0100) is interpreted as: 

 (-1)
0
 *2

22-16 
* (1 + (948/2

10
)) which resolves to a float value of 123.25.  

 

For product 135, data level codes 0 and 1 correspond to “Below threshold” and “bad data”, respectively.  

Each echo top byte contains two pieces of information:  the echo top in kft and an indication of if it were 

“topped”.  The echo top data, thus, are grouped into two sets:  2-71 and 130-199. The second set is the same 

echo tops set as the first except that the most significant bit is set to1 to indicate a “topped” value.  Each 

increment represents an increase of 1 kft.  Any value of Echo Tops above 70 kft is set to a data value of 1. 

Half words 31, 32, 33, and 34 are provided to use for extracting the echo top value and “topped” flag:  

 



Vol 2 Appendix C - Data Level Threshold Values in Existing Products                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 184 of 202 

             halfword 31 contains the DATA_MASK 127 or 0x7f (hex) identifying the data bits  

 halfword 32 contains the DATA_SCALE 1  

 halfword 33 contains the DATA_OFFSET 2  

 halfword 34 contains the TOPPED_MASK 128 or 0x80 (hex)  

 

The following relations are used when HREET data are decoded,  

 
Value : Integer HREET altitude, expressing thousands of feet.  

Topped: Boolean describing HREET "topped" condition.  

Data  : Packed integer HR-EET value.  

==    : Equality evaluation.  

!=    : Inequality evaluation.  

&     : Binary 'AND' operator. 

|     : Binary 'OR' operator.  

?     : Conditional expression:  

 

  ( A ? B : C ) returns B if A is true, returns C if A is false.  

 

Use the following when decoding HREET data elements from NEXRAD product messages,  

 

if ( Data == 0 )  

 

Value is declared below threshold.  

  Topped is declared false.  

 

else if ( Data == 1 )  

 

Value is declared bad.  

  Topped is declared false.  

 

else  

 

Value = ( ( Data & DATA_MASK ) / DATA_SCALE ) - DATA_OFFSET  

  Topped = ( Data & TOPPED_MASK ) != 0  

 

================================================================ 

 
Encoding for Run Length Encoded (4-bit) Products 

 

Except for Products 32, 81, 93, 94, 99, 134, 135, 138, 153, 154, and 155 the Data Level Threshold  

halfwords are coded as follows:  

 

If bit 0 (most significant bit) is set to one (1), then the least significant byte (bits 8-- 15) is interpreted  

as a code for: 

 

0 = "BLANK"  

1 = TH 

2 = ND  

3 = RF 

 

If bits 1, 2, 3, 4, 5, 6 or 7 of the most significant byte are set to 1, then they are interpreted as a code  

for: 

 

Bit 1 - If set the data field in the least significant byte is scaled by 100, to allow two decimal places of  

accuracy in some of the Threshold tables. 

  



Vol 2 Appendix C - Data Level Threshold Values in Existing Products                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 185 of 202 

Bit 2 - If set the data field in the least significant byte is scaled by 20, to allow two decimal places of  

accuracy in some of the Threshold tables.   

 

Bit 3 -  If set the data field in the least significant byte is scaled by 10, to allow for one decimal place of 

accuracy in some of the threshold tables.  

 

Bit 4 = ">"  

Bit 5 = "<"  

Bit 6 = "+"  

Bit 7 = "-"  

 

If bit 0 (most significant bit) is zero (0), then the low-order byte (bits 8 - 15) is a numeric value.  

 

Example: A data level value of (Hex) 8401, (bit sequence 1000 0100 0000 0001) is interpreted as: < 

TH  

 
================================================================ 

 

For product 138, data level code 0 corresponds to no accumulation and data level codes 1 through 255 

denote accumulation values in units of hundredths-of-inches ( .01''), in even data increments, with data level 

code 1 being the first non-zero accumulation value.  The threshold level fields are used to describe the 256 

levels for product code 138 as follows:  

 

Halfword 31 contains the minimum data value ( i.e., 0)  

Halfword 32 contains the increment in .01'' units  

Halfword 33 contains the number of levels ( 0 - 255)  

 

The Data Level threshold values used to define the color table of products, described in Table III, consist of 

up to 16 Data Levels. The exceptions to this are products 32, 81, 93, 94, 99, 156 and 157that may have up to 

a maximum of 255 equally spaced data levels.   

 

For product 156, halfwords 31, 32, 33 and 34 contain parameters for decoding the digital (encoded) EDR, 

“DEDR”, to EDR via a linear scale as follows:  

 

halfword 31 contains the linear scale factor (increment) in units of m
2/3

 s
-1

 * 1000  

halfword 32 contains the linear offset in units of m
2/3

 s
-1

 * 1000  

halfword 33 contains the total number of data levels (currently 64)  

halfword 34 contains the number of leading data flags (currently 1)  

 

Thus, DEDR = 0 represents flagged data and EDR = (halfword 31 / 1000) * DEDR + (halfword 32 / 1000) for 

DEDR values from 1 to 63.  

 

For product 157, halfwords 31, 32, 33 and 34 contain parameters for decoding the digital (encoded) EDC, 

“DEDC”, to EDC via a linear scale as follows:  

 

halfword 31 contains the linear scale factor (increment)  

halfword 32 contains the linear offset 

halfword 33 contains the number of data levels (currently 8)  

halfword 34 contains the number of leading data flags (currently 0)  

 

Thus, EDC = (halfword 31 / 1000) * DEDC + (halfword 32 / 1000) for DEDC values from 0 to 7.  

 

 



Vol 2 Appendix D - Base Data Header Field Definitions                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 186 of 202 

Volume 2. Appendices 

 

Appendix D. Base Data Header Field Definitions 

 

Base Data Header - Beginning with Build 12  
ANSI-C 

struct  Base_data_header        

Data Type  
Name of 

Component  
Description  Code  

   
unsigned 

short  
msg_len  in the ORPG, the size of this message in shorts (2-bytes)     

   short  msg_type  

This field contains bit flags that are used to describe the 

message type and the enabled moments. See the table Bit 

Flag Definitions for the  msg_type  Field for a description.  

   

   short  version  Version number for the radial format. Currently 0.   **  

   

char  radar_name[6]  
Radar name string consisting of 4 characters plus NULL 

terminator.  
 **     

   

   
int  time  

Collection time for this radial in milliseconds past midnight 

(GMT).  
R  

   

   
int  begin_vol_time  volume start time of in MS past midnight  RSI  

   

   
unsigned 

short  
date  Radial date, Modified Julian date (from 1/1/70)  R  

   
unsigned 

short  
begin_vol_date  

Beginning of Volume. Modified Julian date (starting from 

1/1/70)  
RSI  

   
float  latitude  

Latitude of the RDA. Build 9 - from site adaptation data. 

Build 10 - from RDA message.  
 **  

   

   
float  longitude  

Longitude of the RDA. Build 9 - from site adaptation data. 

Build 10 - from RDA message.  
 **  

   

   
unsigned 

short  
height  

Height of the radar in meters MSL. Build 9 - from site 

adaptation data and is the same as feedhorn height. Build 10 - 

from RDA message.  

 **  

   
unsigned 

short  
feedhorn height  

Height of the feedhorn in meters MSL. Build 9 - from site 

adaptation data. Build 10 - from RDA message.  
 **  

   short  weather_mode  Set to 1 (clear air) or 2 (convective)  SI  



Vol 2 Appendix D - Base Data Header Field Definitions                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 187 of 202 

   short  vcp_num  

Volume coverage pattern. For example: 11 = (16 elev scans / 

5 mins); 21 = (11 elev scans / 6 mins); 31 = (8 elev scans / 10 

mins); 32 = (7 elev scans / 10 mins)  

RSI  

   short  volume_scan_num  
Volume scan number (1 - 80). Recycles to 1 after 80. NOTE: 

Very first volume is 0.  
SI  

   short  vol_num_quotient  
Quotient for dividing volume sequence number by 

MAX_VSCAN.  
   

   
float  azimuth  Radial azimuth angle in degrees  r  

   

   
float  elevation  Elevation angle in degrees  r  

   

   short  azi_num  Radial number within elevation scan (1, 2, ...)  R  

   short  elev_num  

RDA elevation number within a volume (1, 2, ...) scan. This 

is the ordinal of the scan. An elevation produced via a split 

cut will be made up of data from two scans.  

R  

   short  rpg_elev_ind  
The RPG elevation index within a volume (1, 2, ...). This is 

the ordinal of the elevation.  
I  

   short  target_elev  

Target elevation in .1 degrees (also found in VCP tables). 

This is the elevation at which the RDA is attempting to 

sample the data.  

   

   short  last_ele_flag  Set to 1 if this is the last cut, set to 0 otherwise.     

   short  start_angle  Calculated radial start angle in .1 degrees.  I  

   short  delta_angle  
Calculated radial width (angle between start angles) in .1 

degrees.  
I  

   

unsigned char  azm_index  
Azimuth Index value (deg*100)  = 100 if azimuth is aligned 

on even degrees. = 50 if aligned on 0.5 deg, = 0 if not aligned 
  

unsigned char  azm_reso  
Azimuth resolution. 1 = BASEDATA_HALF_DEGREE; 

2 = BASEDATA_ONE_DEGREE.  
****  

   
float  sin_azi  Sine of the azimuth angle.     

   

   
float  cos_azi  Cosine of the azimuth angle.     

   

   
float  sin_ele  Sine of the elevation angle.     

   

   
float  cos_ele  Cosine of the elevation angle.     

   

   short  status  

Radial status: 0x00 = beginning of elevation; 0x01 = 

intermediate radial; 0x02 = end of elevation; 0x03 = 

beginning of volume; 0x04 = end of volume; 0x08 = pseudo 

end of elevation; 0x09 = pseudo end of volume;  

R  
 



Vol 2 Appendix D - Base Data Header Field Definitions                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 188 of 202 

   

char  pbd_alg_control  

bits 0-2, processing control flag: 

= PBD_ABORT_FOR_NEW_EE; PBD_ABORT_FOR_NEW_EV; 
PBD_ABORT_FOR_NEW_VV  
bits 3-7, processing control abort reason: see basedata.h 

   

char  pbd_aborted_volume  
Set in conjunction with pbd_alg_control, this is the volume 

scan number to abort.  
   

   short  atmos_atten  
[Elev attribute] Atmospheric attenuation factor; range -2 to -

20; (scaled: val/1000 = dB/KM)  
R  

   short  spot_blank_flag  
0 - none; 1- SPOT_BLANK_RADIAL;  

2 - SPOT_BLANK_ELEVATION; 4 - SPOT_BLANK_VOLUME  
RS  

   
float  horiz_noise  [Radial Attribute] Horizontal Noise, dBm     

   

   
float  vert_noise  [Dual Pol] [Radial Attribute] Vertical Noise, dBm     

   

   
float  calib_const  System gain calibration constant (-50. to +50.) (dB biased).  R  

   

   
float  horiz_shv_tx_power  Horizontal channel power (KW)     

   

   
float  vert_shv_tx_power  [Dual Pol] Vertical channel power (KW)     

   

   
float  sys_diff_refl  [Dual Pol] Calibration of system ZDR     

   

   
float sys_diff_phase  [Dual Pol] Differential phase (deg*182.049882)     

 

   short  sector_num  PRF Sector number within the cut (1, 2, 3)  R  

   short  vel_offset  Byte offset to start of velocity data  ***  

   short  n_dop_bins  
Number of Doppler bins in the msg. Does not include data 

above 70,000 ft. MSL.  
r  

   short  dop_bin_size  Bin size in meters.  r  

   short  dop_range  
Range in number of bins to first good Doppler bin (first bin is 

1).  
r  

   short  range_beg_dop  Range to beginning of first Doppler bin in meters.  r  

   short  dop_resolution  
Set to 1 if RDA message vel_resolution = 2 (0.5 m/s). Set to 

2 if RDA message vel_resolution = 4 (1.0 m/s).  
r  

   short  unamb_range  [Radial Attribute] Unambiguous range (scaled: val/10 = KM)  R  

   short  nyquist_vel  
[Radial Attribute] Nyquist velocity (scaled: val/100 = m/s). 

Set to 0 if the Doppler data is missing.  
R  

   short  vel_snr_thresh  SNR threshold (dB*8)   **  

   short  vel_tover  
Minimum difference in echo power for two signals to not be 

labeled as overlaid (dB*10)  
 **  



Vol 2 Appendix D - Base Data Header Field Definitions                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 189 of 202 

   short  ref_offset  Byte offset to start of reflectivity data  ***  

   short  n_surv_bins  
Number of surveillance bins in the msg. Does not include 

data above 70,000 ft. MSL.  
r  

   short  surv_bin_size  Bin size in meters.  ****  

   short  surv_range  
Range in number of bins to first good surveillance bin (first 

bin is 1).  
r  

   short  range_beg_surv  Range to beginning of first surveillance bin in meters.  r  

   short  sc_azi_num  Split cut azimuth number of reflectivity radial     

   short  surv_snr_thresh  SNR threshold (dB*8)   **  

   short  spw_offset  Byte offset to start of spectrum width data  ***  

   short  spw_snr_thresh  SNR threshold (dB*8)   **  

   short  spw_tover  
Minimum difference in echo power for two signals to not be 

labeled as overlaid (dB*10)  
 **  

   short  spare3  Unused     

 short  spare4  Unused   

   short  no_moments  [Dual Pol] Number of additional data field arrays.     

   

unsigned 

int  
offsets[20]  

[Dual Pol] Byte offset from the beginning of the basedata 

header to the additional data field arrays.  

 

Note: it is possible to have an offset of value 0, which means 

no data.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

   

   



Vol 2 Appendix D - Base Data Header Field Definitions                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 190 of 202 

   

   

   

   

   

   

   

   

   

   

   

 

 

 

 

 

   

   

   

 

 

 Code  Definition  

   **  Data to be included in RDA message beginning with Build 10. Currently data supplied 

from ORPG internal data (site data, VCP info, scan summary table).  

   ***  In the basedata radial messages these offsets are relative to the beginning of the 

basedata header.  

In the basedata elevation message: Prior to Build 10 these offsets are relative to the 

beginning of the basedata header. After Build 10 these offsets are relative to the end of 

the basedata header (the beginning of the first base moment array).  

   ****  These data fields are used to determine the resolution of the data when not registered 

for the original data types. azm_reso provides the radial spacing (1 degree or half 

degree) and surv_bin_size provides the reflectivity range sample size (1000 meters 

or 250 meters).  

   R  Data produced by the RDA and passed on to the ORPG Base Data Radial Message.  

   r  Data produced by the RDA but either slightly modified or encoded differently by the 

ORPG. Includes data that have been derived from other RDA data.  

   S  Data, from the first radial of the first elevation in a volume, is stored in Scan Summary 

table. The time is rescaled to seconds. The weather_mode is encoded differently.  

   I  Data used in an ICD graphic product header fields.  

 

 



Vol 2 Appendix D - Base Data Header Field Definitions                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 191 of 202 

The bit values in the msg_type field are used by the infrastructure to determine the type of base data 

message. There are some situations where these bit fields are also useful in algorithms. 

 

Bit Flag Definitions for the  msg_type  Field  

Bit Set  Defined Bit Masks  
Integer 

Value 
Use  

Bit 0  REF_INSERT_BIT 1 

Identifies data from second cut of a split cut. Used 

when registered for BASEDATA and determining 

which cut the data are from.  

Bit 1  VEL_DEALIASED_BIT  2             

Bit 2  REF_ENABLED_BIT 4 
Indicates that the basic reflectivity moment is 

enabled in the RDA. 

Bit 3  VEL_ENABLED_BIT 8 
Indicates that the basic velocity moment is 

enabled in the RDA. 

Bit 4  WID_ENABLED_BIT  16 
Indicates that the basic spectrum width moment is 

enabled in the RDA. 

 

The following bit masks are cut types - Note 1 

Bit 5  REFLDATA_TYPE 32 

This message was derived from the first cut of a 

split cut.  This is a Continuous Surveillance wave 

type cut. 

Bit 6  COMBBASE_TYPE 64 

This message was derived from the second cut of 

a split cut.  This is a Continuous Doppler wave 

type cut.  

Bit 7  BASEDATA_TYPE 128 
This message was derived from a Batch Cut:.  - 
Batch wave type  - Continuous Doppler batch wave type  

- Staggered Pulse wave type 

 

The following bit masks are radial types - Note 2  

Bit 8  SUPERRES_TYPE 256 

As of Build 12.1, this means the data are in 

increase resoltion of 0.5 deg azimuth sampling. 

The 250 m surveillance range and 300 km 

Doppler range are defined independently.  

Bit 9  DUALPOL_TYPE 512 
(Build 12) Data contain the measured Dual Pol 

data fields. 

Bit 10  RECOMBINED_TYPE 1024 

(Build 10) Data in 0.5 deg resolution has been 

recombined to 1.0 resolution; reflectivity in 250m 

resolution has been recombined to 1 km 

resolution.  

Bit 11 PREPROCESSED_DUALPOL_TYPE 2048 
(Build 12) The Dual Polarization data fields have 

been processed by the RPG. 

Bit 12 HIGHRES_REFL_TYPE 4096 
Added in Build 12.  Reflects horizontal 

resolution of surveillance bins 250 m or 1000 m. 

 

 

Additional masks (multiple bits) 



Vol 2 Appendix D - Base Data Header Field Definitions                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 192 of 202 

Bits 

  5, 6, 7 
CUT_TYPE_MASK 0x00e0 Mask used to only pass the cut type bits. 

 8, 9, 10, 11 RADIAL_TYPE_MASK 0x0f00 Mask used to only pass the radial type bits. 

 5, 6, 7, 8, 9, 

10, 11 
BASEDATA_TYPE_MASK 0x0fe0 

Mask used to pass the cut type and radial type 

bits. 

 5, 6, 7, 8, 9, 

10, 11, 12   
ALL_TYPES 0x1fe0 

Mask used to pass the cut type and radial type 

bits. 

 

Note 1 The bits representing the type of elevation cut (bits 5, 6, 7) can be used to 

distinguish between the first / second cut of a split cut and batch cuts.  Making 

this distinction is not required unless registered for BASEDATA instead of 

REFLDATA or COMBBASE, or registered for BASEDATA_ELEV instead of 

REFLDATA_ELEV or COMBBASE_ELEV, or registered for RAWDATA rather than the 

REFL_RAWDATA or COMB_RAWDATA, or registered for SR_BASEDATA instead of 

SR_REFLDATA or SR_COMBBASE, or registered for DUALPOL_BASEDATA instead of 

DUALPOL_REFLDATA or DUALPOL_COMBBASE. 

Note 2 Currently the values of the bits representing the type of radial message (bits 8, 9, 

10, 11, 12) are not actually needed for algorithms.   

 Instead of the SUPERRES_TYPE bit (azimuth resolution), the basedata header 

field: azm_reso can be used to determine the azimuth resolution.  

 Instead of HIGHRES_REFL_TYPE (surveillance range resolution), the basedata 

header field: surv_bin_size can be used to determine range resolution.    

 The other radial type bits simply correspond to the type of base data 

registered for. 

 

 

 
 

 

 

Data Type Definitions  

char  8 bits   int 32 bits 

short  16 bits   float 32 bit, IEEE Std. 754-1985 

 

 

 

 

Base Data Header - Build 10 & Build 11  
ANSI-C 

struct  Base_data_header        

Data Type  
Name of 

Component  
Description  Code  

   short  msg_len  in the ORPG, the size of this message in shorts (2-bytes)     



Vol 2 Appendix D - Base Data Header Field Definitions                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 193 of 202 

   short  msg_type  

This field contains bit flags that are used to describe the 

message type and the enabled moments. See the table Bit 

Flag Definitions for the  msg_type  Field for a description.  

   

   short  version  Version number for the radial format. Currently 0.   **  

   

char  radar_name[6]  
Radar name string consisting of 4 characters plus NULL 

terminator.  
 **     

   

   
int  time  

Collection time for this radial in milliseconds past midnight 

(GMT).  
R  

   

   
int  begin_vol_time  volume start time of in MS past midnight  RSI  

   

   
unsigned 

short  
date  Radial date, Modified Julian date (from 1/1/70)  R  

   
unsigned 

short  
begin_vol_date  

Beginning of Volume. Modified Julian date (starting from 

1/1/70)  
RSI  

   
float  latitude  

Latitude of the RDA. Build 9 - from site adaptation data. 

Build 10 - from RDA message.  
 **  

   

   
float  longitude  

Longitude of the RDA. Build 9 - from site adaptation data. 

Build 10 - from RDA message.  
 **  

   

   
unsigned 

short  
height  

Height of the radar in meters MSL. Build 9 - from site 

adaptation data and is the same as feedhorn height. Build 10 - 

from RDA message.  

 **  

   
unsigned 

short  
feedhorn height  

Height of the feedhorn in meters MSL. Build 9 - from site 

adaptation data. Build 10 - from RDA message.  
 **  

   short  weather_mode  Set to 1 (clear air) or 2 (convective)  SI  

   short  vcp_num  

Volume coverage pattern. For example: 11 = (16 elev scans / 

5 mins); 21 = (11 elev scans / 6 mins); 31 = (8 elev scans / 10 

mins); 32 = (7 elev scans / 10 mins)  

RSI  

   short  volume_scan_num  
Volume scan number (1 - 80). Recycles to 1 after 80. NOTE: 

Very first volume is 0.  
SI  

   short  vol_num_quotient  
Quotient for dividing volume sequence number by 

MAX_VSCAN.  
   

   
float  azimuth  Radial azimuth angle in degrees  r  

   

   
float  elevation  Elevation angle in degrees  r  

   

   short  azi_num  Radial number within elevation scan (1, 2, ...)  R  

   short  elev_num  

RDA elevation number within a volume (1, 2, ...) scan. This 

is the ordinal of the scan. An elevation produced via a split 

cut will be made up of data from two scans.  

R  



Vol 2 Appendix D - Base Data Header Field Definitions                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 194 of 202 

   short  rpg_elev_ind  
The RPG elevation index within a volume (1, 2, ...). This is 

the ordinal of the elevation.  
I  

   short  target_elev  

Target elevation in .1 degrees (also found in VCP tables). 

This is the elevation at which the RDA is attempting to 

sample the data.  

   

   short  last_ele_flag  Set to 1 if this is the last cut, set to 0 otherwise.     

   short  start_angle  Calculated radial start angle in .1 degrees.  I  

   short  delta_angle  
Calculated radial width (angle between start angles) in .1 

degrees.  
I  

   

unsigned char  azm_index  
Azimuth Index value (deg*100)  = 100 if azimuth is aligned 

on even degrees. = 50 if aligned on 0.5 deg, = 0 if not aligned 
  

unsigned char  azm_reso  
Azimuth resolution. 1 = BASEDATA_HALF_DEGREE; 

2 = BASEDATA_ONE_DEGREE.  
****  

   
float  sin_azi  Sine of the azimuth angle.     

   

   
float  cos_azi  Cosine of the azimuth angle.     

   

   
float  sin_ele  Sine of the elevation angle.     

   

   
float  cos_ele  Cosine of the elevation angle.     

   

   short  status  

Radial status: 0x00 = beginning of elevation; 0x01 = 

intermediate radial; 0x02 = end of elevation; 0x03 = 

beginning of volume; 0x04 = end of volume; 0x08 = pseudo 

end of elevation; 0x09 = pseudo end of volume;  

R  
 

   

char  pbd_alg_control  

bits 0-2, processing control flag: 

= PBD_ABORT_FOR_NEW_EE; PBD_ABORT_FOR_NEW_EV; 
PBD_ABORT_FOR_NEW_VV  
bits 3-7, processing control abort reason: see basedata.h 

   

char  pbd_aborted_volume  
Set in conjunction with pbd_alg_control, this is the volume 

scan number to abort.  
   

   short  atmos_atten  
[Elev attribute] Atmospheric attenuation factor; range -2 to -

20; (scaled: val/1000 = dB/KM)  
R  

   short  spot_blank_flag  
0 - none; 1- SPOT_BLANK_RADIAL;  

2 - SPOT_BLANK_ELEVATION; 4 - SPOT_BLANK_VOLUME  
RS  

   
float  horiz_noise  [Radial Attribute] Horizontal Noise, dBm     

   

   
float  vert_noise  [Dual Pol] [Radial Attribute] Vertical Noise, dBm     

   

   
float  calib_const  System gain calibration constant (-50. to +50.) (dB biased).  R  

   



Vol 2 Appendix D - Base Data Header Field Definitions                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 195 of 202 

   
float  horiz_shv_tx_power  Horizontal channel power (KW)     

   

   
float  vert_shv_tx_power  [Dual Pol] Vertical channel power (KW)     

   

   
float  sys_diff_refl  [Dual Pol] Calibration of system ZDR     

   

   
float sys_diff_phase  [Dual Pol] Differential phase (deg*182.049882)     

 

   short  sector_num  PRF Sector number within the cut (1, 2, 3)  R  

   short  vel_offset  Byte offset to start of velocity data  ***  

   short  n_dop_bins  
Number of Doppler bins in the msg. Does not include data 

above 70,000 ft. MSL.  
r  

   short  dop_bin_size  Bin size in meters.  r  

   short  dop_range  
Range in number of bins to first good Doppler bin (first bin is 

1).  
r  

   short  range_beg_dop  Range to beginning of first Doppler bin in meters.  r  

   short  dop_resolution  
Set to 1 if RDA message vel_resolution = 2 (0.5 m/s). Set to 

2 if RDA message vel_resolution = 4 (1.0 m/s).  
r  

   short  unamb_range  [Radial Attribute] Unambiguous range (scaled: val/10 = KM)  R  

   short  nyquist_vel  
[Radial Attribute] Nyquist velocity (scaled: val/100 = m/s). 

Set to 0 if the Doppler data is missing.  
R  

   short  vel_snr_thresh  SNR threshold (dB*8)   **  

   short  vel_tover  
Minimum difference in echo power for two signals to not be 

labeled as overlaid (dB*10)  
 **  

   short  ref_offset  Byte offset to start of reflectivity data  ***  

   short  n_surv_bins  
Number of surveillance bins in the msg. Does not include 

data above 70,000 ft. MSL.  
r  

   short  surv_bin_size  Bin size in meters.  ****  

   short  surv_range  
Range in number of bins to first good surveillance bin (first 

bin is 1).  
r  

   short  range_beg_surv  Range to beginning of first surveillance bin in meters.  r  

   short  sc_azi_num  Split cut azimuth number of reflectivity radial     

   short  surv_snr_thresh  SNR threshold (dB*8)   **  

   short  spw_offset  Byte offset to start of spectrum width data  ***  

   short  spw_snr_thresh  SNR threshold (dB*8)   **  

   short  spw_tover  
Minimum difference in echo power for two signals to not be 

labeled as overlaid (dB*10)  
 **  

   short  spare3  Unused     

   short  no_moments  [Dual Pol] Number of additional data field arrays.     



Vol 2 Appendix D - Base Data Header Field Definitions                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 196 of 202 

   

unsigned 

short  
offsets[17]  

[Dual Pol] Byte offset from the beginning of the basedata 

header to the additional data field arrays.  

 

Note: it is possible to have an offset of value 0, which means 

no data.  

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 

 



Vol 2 Appendix E - The Generic Moment Structure                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 197 of 202 

Volume 2. Appendices 

 

Appendix E. The Generic Moment Structure 

 

Generic Moment - Defined in ORPG Build 10, fully implemented in ORPG Build 12 

ANSI-C 
struct  Generic_moment_t  

THE DEFINITION OF THIS STRUCTURE 

IS STILL UNDER DEVELOPMENT.  
 

Data Type  
Name of 

Component  
Description   

char  name[4]  Name of this moment. See Note 1 for possible values.   

unsigned int  info  
Offset to the moment specific information for this moment. 

This is currently not used, value set to 0.  
 

unsigned short  no_of_gates  number of gates (size of the data array) for this moment   

short  first_gate_range  Range to the center of the first gate, in meters   

short  bin_size  Size of each gate for this moment, in meters   

short  tover  
The minimum difference in echo power between two 

resolution gates for them not to be labeled "overlayed", in 
dB*10  

 

short  SNR_threshold  
Signal to Noise Ratio for valid data, in dB*10 (error in 

comment in generic_basedata.h) 
 

unsigned char  control_flag  
 0 - None;  1 - recombined azimuth;  2 - recombined range 

gates;  3 - recombined azimuth and range gates (Legacy res)   
 

unsigned char  data_word_size  Number of bits used for each gate of data. 8, 12, 16, or 32   

float  scale  
Scale factor used to quantify the data (encode floating point 

data into an integer). A value of 0.0 is used to distinguish 32-

bit floating point data from 32 bit integer data. See Note 2.  

 

float  offset  
The shift factor used to quantify the data (encode floating 

point data into an integer). See Note 2.  
 

union {  

} gate  

A variable length data array. no_of_gates indicates the 

number of elements in the array and data_word_size 

indicates the type and size of the data. One of the following 

types:  

 

unsigned char b[0]  data_word_size 8, 12   

unsigned short u_s[0]  data_word_size 16   

unsigned int u_i[0]  
data_word_size 32 

and scale not 0.0  
 

float f[0]  
data_word_size 32 

and scale 0.0  
 

    



Vol 2 Appendix E - The Generic Moment Structure                                                                                                      

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 198 of 202 

 

 

    
   Note 1  Name used to identify this moment type. Note space padded on the right. The initial 

Dual Pol Implementation is targeted for Build 12.1.   
 

Measured Data Fields (from SR_BASEDATA, etc.) 

     "DZDR" Differential Reflectivity - non-processed 

     "DPHI" Differential Phase - non-processed 

     "DRHO" Correlation Coefficient - non-processed 

      

Derived / Processed Data Fields (from DUALPOL_BASEDATA, etc.) 

     "DZDR" Differential Reflectivity - processed  

     "DPHI" Differential Phase - processed  

     "DRHO" Correlation Coefficient - processed  

     "DSNR" Signal-to-Noise Ratio  

     "DSMZ" Processed Reflectivity 

     "DSMV" Smoothed Velocity 

     "DKDP" Specific Differential Phase 

     "DSDZ" Texture (standard deviation) for Reflectivity 

     "DSDP" Texture (standard deviation) for Differential Phase 

 

The Base Data Moments ("DREF" Reflectivity, "DVEL" Velocity, and "DSW " Spectrum 

Width) in the external RDA message (message 31) are not in the internal basedata 

generic structures, they are located in the basic arrays of the internal OPRG basedata 

message.  

    

   Note 2  Formulas for encoding and decoding the moment data. 

     To convert floating point moment to integers (encoding): 

           i = (f * scale) + offset 

     To convert integer moment data to floating point (decoding): 

           f = (i - offset) / scale  



Vol 2 Appendix F - Software Removed for the Public Edition                                                                                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 199 of 202 

 

Volume 2. Appendices 
 

Appendix F. Software Removed for the Public Edition 

 

Differences between the U.S. Government and Public Editions of CODE  
 

The significant difference between the U.S. Government Edition and the Public Edition of CODE is the 

removal of certain proprietary software components in the Public release. The source code archive 

provided with the Public Edition has been modified to eliminate this software and the filename changed 

to include the term "pub" for public (e.g., rpg_b##_#r#_##_pub_src.tgz) in order to identify the 

correct archive.  

 

Currently, 8 operational tasks have been removed from the NWS Edition. A summary of the software 

removed is contained in the following table.  

 

Operational Processes Removed for the Public Edition  

Source Code 
Directory  

Executable 
Task Name  

Product 
Name  

  
ID   Product Description  Source 

cpc010  nexradMigfa  MIGFA  140  GFM Gust Front MIGFA  MIT/LL 

cpc022/tsk001 ntda_alg NTDA_EDR_IP 

NTDA_CONF_IP 

315 

316 
NTDA EDR Intermediate Prod 

NTDA CONF Intermediate Prod 

NCAR 

cpc022/tsk002 ntda_fp NTDA_EDR 

NTDA_CONF 

156 

157 
NTDA EDR Final Product 

NTDA CONF Final Product 

NCAR 

cpc022/tsk003  data_qual  DQA  297  Edited Reflectivity Data  MIT/LL 

cpc022/tsk004  hiresvil  HRVIL  134  High Resolution Digital VIL MIT/LL 

cpc022/tsk005  hireseet  HREET  135  Enhanced Echo Tops MIT/LL 

cpc022/tsk007 icing_hazard IHL 178 IHL Icing Hazard Level MIT/LL 

Cpc022/tsk008 hail_hazard HHL 179 HHL Hail Hazard Layer MIT/LL 

      

 



Vol 2 Appendix G - Quick Reference for Starting the ORPG                                                                                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 200 of 202 

Volume 2. Appendices 
 

Appendix G. Quick Reference for Starting the ORPG 

 

This is a quick reference to running the ORPG.  Complete procedures for starting and stopping the 

ORPG along with troubleshooting hints are included with CODE Guide Volume 1 Document 1 Section 

IV. 

 

If you have problems starting the ORPG software, troubleshooting hints are contained in Volume 

1 Appendix H - ORPG Launch Problems. 

 

 
 

 

TO START ORPG TASKS:  
 

 Log in as an appropriate user, that is the account into which the ORPG is installed.  

 

 Type:   mrpg -p -v startup      

The -v option provides a verbose output.  

The -p option cleans up all data stores before starting up.  

 Wait for the command prompt to return. Startup normally requires less than one minute.  

A sample output of this command is provided in Volume 1 Appendix I. 

 

 

 

To Check Status of Running Programs:  
 

 Type:   rpg_ps      

 

A sample output of rpg_ps is provided in Volume 1 Appendix J. 

 

Note: The rpg_ps command does not work unless certain ORPG tasks are running (it will not work after 

executing mrpg cleanup). In this case, the status of running tasks can be checked with the standard    

ps  -ef   command.  

 

 
 

 



Vol 2 Appendix G - Quick Reference for Starting the ORPG                                                                                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 201 of 202 

 
To Launch the ORPG User Interface Program:  
 

Type:    hci      

 

Note: ORPG algorithm tasks will run without launching the hci. Documentation of the hci is not 

included with this package. 

 

 

 

 

 
 

 

Ingest a Source of Base Data  
 

The ORPG utility "play_a2" is used for disk file and tape playback. In addition to the command line 

mode for Archive II disk files, play_a2 includes an interactive mode for both Archive II disk files and 

8mm Archive II tapes.   

 

Using Archive II data disk files:  

 

The ORPG utility "play_a2" reads individual files each containing a volume of Archive II data and 

ingests the data into the ORPG. In order to provide a quick test of the ORPG, three files are included 

with the CODE ORPG configuration files and have been installed in $HOME/ar2data. The CODE CD 

contains additional Archive II disk files.  

 

Execute the following command to ingest these files.  

 

 Type:    play_a2 -d $HOME/ar2data 

 If you have launched the hci, observe the RDA radome indicate scanning in progress on the 

GUI window  

 

If the variable AR2_DIR has been set to the $HOME/ar2data directory, executing 'play_a2' will suffice.  

 

See the CODE Utility documentation contained in CODE Guide Volume 4 for additional information 

the command line mode of play_a2.  

 

 
 

 

 
 



Vol 2 Appendix G - Quick Reference for Starting the ORPG                                                                                                    

CODE Volume 2                               B17.0r1.13                          May 2016                           Page 202 of 202 

For Graphic Display of Final Products:  
 

NOTE: The environmental variable CVG_DEF_PREF_DIR must be defined as the path of the location of 

the default preferences files (normally $HOME/tools) for CVG to function properly.  

 

 Type:    cvg    to launch the CODEview Graphics Display tool  

 

Once the utility is launched,  

 

A product must be selected from the product database using the product list on the main 

CVG window.  

 

After the product is selected, the desired data packets for display are chosen from the 

Packet Selection popup-screen.  

 

See the CODE Utility documentation contained in CODE Guide Volume 4 for additional information.  

 

 
 

 

TO STOP ORPG TASKS:  

 Type:   mrpg shutdown     

 

 Type:   mrpg cleanup     

 

IMPORTANT: Even though mrpg cleanup command is optional, it should always be executed in a 

development environment when stopping the ORPG. It is important to execute mrpg cleanup if the 

ORPG is installed in more than one account. If not, an ORPG that is installed in another account will not 

launch unless the value of RMTPORT has been modified. 

 

 
 

 

To Stop Ingest of Base Data:  

Archive II disk files:  

 Type ctrl-C in the terminal that started the 'play_a2' utility  

 


